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INTRODUCTION 
2D trusses are one of the most common types of structures. The 

structure of a truss is economic since the ratio of the structure 

weight to forces carried by this structure is expressed as a small 

number.  According to assumptions, loads (concentrated forces) 

will act on nodes only (temperature loads are an exception here) 

and connection bars will be joined with nodes in an articulated 

way. 

Although most structures which have been built lately are trusses 

with rigid nodes, methods of solving problems in truss statics with 

articulated joints are still very important in engineering practice. 

The system of a plane truss with an articulated joint is the simplest 

example of an construction showing the idea of the finite element 

method without employing any complicated details. 
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BASIC RELATIONS AND NOTATIONS 
We assume that the bar of a plane truss (we will also call it an 

element) is straight and homogeneous (it means that it is made 
from a homogeneous material without fractures and holes and has 
a constant cross section) and it joins nodes i (the first node) and j 
(the last node). Notations for these nodes (i, j) are local notations 
which are the same for all bars and they are to define element 
orientation. 

 Structure nodes also have global numbers which allow us to 
identify them. Global numbers are marked as ni (the global number 
of the first node) and nj (the global number of the last node). The 
node of a plane truss can move on the plane XY only. In mechanics, 
it means that the node has two degrees of freedom because in 
order to determine its location during its motion it should be 
given two coordinates. 
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BASIC RELATIONS AND NOTATIONS 
The situation of the node i of a rigid structure will be determined 

by initial coordinates Xi, Yi with respect to the coordinate system 
which will be used for the description of the whole structure. This 
system is global and its axes will be denoted by X, Y. The location 
of the node i, after its deformation caused by loads, is determined 
by two components of the displacement vector of nodes uiX and 
uiY.  

This method is called the Langrange description in mechanics. We 
introduce a local coordinate system x, y. The x axis of the system 
overlaps the axis of the bar and has its beginning at the first node 
of an element i, while the y axis is perpendicular to the x axis and 
is directed in such a way that the Z axis of the global coordinate 
system and z axis of the local system have the same sense and 
direction.  
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BASIC RELATIONS AND NOTATIONS 

The global coordinate system  XY 
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BASIC RELATIONS AND NOTATIONS 

The local coordinate system  xy 
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BASIC RELATIONS AND NOTATIONS 

Because we accept that both coordinate systems are 

right-torsion, we can obtain the axis y by rotating the x 

axis clockwise through the angle π/2. 

The most important notations, directions as well as 

senses of vectors and the coordinate systems are shown 

in previous figure. 

Nodal displacements and forces of elements are written 

as column matrices (vectors) 
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BASIC RELATIONS AND NOTATIONS 

The nodal displacement vector of the initial node i  

and the end node j in the local coordinate system: 

 

 

 

The nodal displacement vector  

 of the element e in the local  

 coordinate system: 
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BASIC RELATIONS AND NOTATIONS 

The nodal forces vector of the initial  node i and  

 the end node j in the local coordinate system: 

 

 

 

The nodal forces vector  

 of the element e in the  

 local coordinate system: 
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THE STIFFNESS MATRIX IN THE LOCAL 

COORDINATE SYSTEM 

We look for the relation between nodal force vectors 
and nodal displacement vectors, which is necessary to 
express equilibrium equations depending on the nodal 
displacements: 

 

 

The general method of building such a relationship 
consists of using the principle of virtual work, but in this 
case we will apply different approach. We will use the 
equilibrium conditions in their basic forms which is 
possible in the case of bar elements. 
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THE STIFFNESS MATRIX IN THE LOCAL 

COORDINATE SYSTEM 

Equilibrium equations for the element e lead to the 

following relations: 

 

 and we obtain 
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THE STIFFNESS MATRIX IN THE LOCAL 

COORDINATE SYSTEM 

Since the set of three equilibrium equations                 

Fiy = 0, Fjy = 0, Fix = Fjx, contains four unknown 

parameters, this problem is statically indeterminate. The 

arrangement of an additional equation is necessary in 

order to make the determination of nodal forces 

possible.  This equation ought to use the relation 

between nodal displacements of an element and its 

internal forces. 
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THE STIFFNESS MATRIX IN THE LOCAL 

COORDINATE SYSTEM 

Hooke’s law written for a simple case of axial tension of 

a straight and homogeneous bar contains these relations: 

 

 

N - the axial force in the bar, 

L - the bar length, 

ΔL - increment of the bar length; 

E - Young’s modulus of the material from which the bar is made 

A - the area of the bar cross section. 
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THE STIFFNESS MATRIX IN THE LOCAL 

COORDINATE SYSTEM 

We can observe simple relations between nodal forces 

acting on the bar, that is, Fix , Fjx and the axial force N:  

 Fix  N ,  Fjx  N 
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THE STIFFNESS MATRIX IN THE LOCAL 

COORDINATE SYSTEM 

     these relations satisfy the 

equilibrium equation identically:   

 

The increment of the bar length due to tension results 

from axial displacements of the bar endings: 

 

 

 which leads to the relation:       

 

15 

F Nix   F Njx 

F Fix jx 

L u ujx ix 

 N
EA

L
u ujx ix 



AUTHOR:  

J ERZY PODGÓRSKI  

THE STIFFNESS MATRIX IN THE LOCAL 

COORDINATE SYSTEM 

Taking into consideration the relationship between the 

axial force of the element and nodal forces                          

  , 

 with respect to  

 

 we obtain:  
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THE STIFFNESS MATRIX IN THE LOCAL 

COORDINATE SYSTEM 

The resulting relations are the searched relations                 

  between the nodal forces and nodal 

displacements of the truss element: 
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THE STIFFNESS MATRIX IN THE LOCAL 

COORDINATE SYSTEM 

After considering notations           and                   the 

above form leads to the equation: 

 

 

 

 

 

 

 which defines a matrix        . 
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THE STIFFNESS MATRIX IN THE LOCAL 

COORDINATE SYSTEM 

This matrix will be called the element stiffness matrix of 

a plane truss. The matrix in the previous form expresses 

relationships between the vector  and the nodal force 

vector of an element  in the local coordinate system. 

The stiffness matrix  can be simplified to: 

 

 

 where J' is the square matrix defined in the following 

way: 

 

19 

K
J J

J J
'

' '

' '
e 

























00

01
'

L

EA
J



AUTHOR:  

J ERZY PODGÓRSKI  

COORDINATE SYSTEM ROTATION 
The form of the element stiffness matrix determined in 

the local coordinate system will not be convenient in 
further considerations for which we will use matrices of 
different elements. The most convenient method is 
transforming all matrices to the form which is defined in 
one common coordinate system. Such a system will be 
called the global coordinate system.  

It can be the system of a certain type: cartesian, polar or 
curvilinear.  The cartesian coordinate system is the most 
convenient system for a truss.  

Nodal coordinates of a structure are usually given in the 
global coordinate system. 
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COORDINATE SYSTEM ROTATION 

Now we convert the element stiffness matrix to the 

global system. We start the transformations by finding 

relationships for a single node: 

 

  

 or in matrix form: 

  

 where                 and                . 
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COORDINATE SYSTEM ROTATION 

22 

Displacement vector components in the global and local 
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COORDINATE SYSTEM ROTATION 

Denoting and taking into consideration: 

    
 

   we obtain: 

 

                               - the transformation matrix of 

                                 the vector from the local  

                                 to global coordinate system. 
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COORDINATE SYSTEM ROTATION 

A reverse relation will be required: 

 

  

 where (Ri)
-1 is the inverse matrix of Ri; it means that it  

 has such a property that        , where I is the  
     

 identity matrix: 

 

The matrix Ri like other „rotation matrices” has a 

property that gives: 
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COORDINATE SYSTEM ROTATION 

It means that Ri is the orthogonality matrix (the 

determinant of this matrix is equal to 1, i.e. det(Ri)=1; 

det(Ri)
T=1).   

We can easily check the upper property of the matrix Ri 

by making a direct calculation: 
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COORDINATE SYSTEM ROTATION 

The transformation matrix contains the blocks of the 

nodal transformation matrix: 

 

 

Ri and Rj are the transformation matrices of the first 

and last node, 0 is the part of the matrix containing zero 

values.  

Ri and Rj are usually identical (for straight elements) 

because rotation angles of the vector are equal. 
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COORDINATE SYSTEM ROTATION 

Finally, the relationships between the nodal displacement 

vector of the element expressed in the local system and 

the same vector in the global system have the form: 
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COORDINATE SYSTEM ROTATION 

The relationship between the nodal force vector of an 

element in the local system and the same vector in the 

global system is identical to the relationship that we have 

obtained in the equations describing displacements: 
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STIFFNESS MATRIX IN THE GLOBAL 

COORDINATE SYSTEM 

Multiplying                   by the transformation matrix and 

substituting relation                     , we obtain: 

 

On the basis of relation                  the right hand side 

of this equation is equal to      , so if we introduce the 

notation    we obtain: 

It is the required relationship between nodal forces and 

displacements of the element in the global coordinate 

system. 
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STIFFNESS MATRIX IN THE GLOBAL 

COORDINATE SYSTEM 

If we perform the multiplication in                             ,  

we obtain: 

 

 
      

Now we can exchange form of the  J matrix into 

equivalent one in which trigonometric functions do not 

exist:   
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

Replacing existing bars (elements) of a truss by nodal 

forces we obtain a group of nodes which can be treated 

as material particles with two degrees of freedom. These 

nodes are loaded with concentrated forces coming from 

elements or external loads. The equilibrium conditions 

for such a node are as follows: 
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

   - component in the direction X of nodal forces from 

the element numbered ek acting on a node n, 

        - component in the direction X of the external forces 

acting on the node n, 

 En - number of elements joined to the node n. 
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

 Nodal and external forces 

acting on the truss node. 
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

Now we transform the set of this equtions to the form 

containing nodal displacements: 
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

matrices Kin are quadratic matrices with dimensions 2x2  

 determined as follows:    if i=n , 
     

 e1, e2…ek…eEn are numbers of the elements joined at 

node n, 

if           and nodes i and n are connected by some 

element with a number e, then 
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

Arranging                                                        for all  

 nodes we obtain the final form allowing determination of 

nodal displacements: 
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

The matrix K of the set of equation                 is the 

global stiffness matrix of the structure, the vector u is 

the global vector of nodal displacements of the structure 

and the vector p is the global vector of nodal forces of 

the structure. 

Careful numbering of the nodes can allow K to the 

banded matrix which is characterised by a fact that non-

zero components appear on the main diagonal and 

closely to it.  
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

The matrix K is a symmetric matrix which means that 

its components satisfy equations: 

  

 result from the principle of virtual work.  

Components Knn which are on the main diagonal are 

always positive ( Knn > 0 ) which is a direct conclusion 

drawn from definitions: 
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

The zero component Knn demonstrates geometric 

changability of a structure and should be removed by a 

suitable change of a geometric scheme.  The matrix K in 

Ku=p is a singular matrix (|K|= 0), hence the set of 

equation Ku=p cannot be solved without modifying it. 

This modification will depend on the consideration of 

boundary conditions.  We will consider this problem in 

the next section. 
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

The process of building the global stiffness matrix is 

called aggregation of a matrix. It can be done by means 

of the method described in previous presentation 

demanding formation of connection matrices. Since 

these matrices are large, then their use is not convenient 

and they are rarely used in computer implementation of 

the FEM algorithm. 

The method of summation of blocks shown by   

                                                               and         

is much simpler.  
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

The stiffness 

matrix 

aggregation 

scheme 
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EQUILIBRIUM EQUATIONS AND 

AGGREGATION 

‘+’ signs located at arrows pointing to the place of 

location of blocks        mean that blocks       should be 

added to the existing contents of ‘cells’ of matrices          

or        , and blocks         lying beyond the diagonal 

should be added to ‘cells’           or        . 

In the case of a truss where nodes are usually joined by 

one element, blocks lying beyond the main diagonal 

contain only a single matrix      . But blocks lying on the 

main diagonal contain sums of as many matrices   

as elements joined with the node ni. 
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BOUNDARY CONDITIONS 

The global stiffness matrix of a structure is most often a 

singular matrix directly after the aggregation. It means 

that the determinant of this matrix is equal to zero. 

Because the set of Ku=p has to have only one solution 

for static problems, we have to modify the global 

stiffness matrix. It should be done in such a way that the 

solution of the set of linear this equation is possible. 

The reason for the singularity of the matrix K is the lack 

of information about supports of the construction, thus 

we need to define what the support of the node is. 
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For trusses there are two types of supports possible: an 
articulated support and an articulated movable support.  

The articulated support prevents movements of a node 
in any direction which means: 

The movement of the support          
node r causes reactions in two         
components:  RX and RY,  which          
counteract the movement of the          
node r.   

This support assures                                 
free support of a node. 
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The next support is called an articulated movable 

support and it prevents movements of a node along one 

line only, but it allows movement of a node in 

perpendicular direction with respect to this line.  The 

reaction occurring in the support can have the direction 

of this line only. It can appear in a few forms, two most 

often occurring variants give very simple support 

conditions.  
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support with the possibility of                         

movement along the Y axis of                                  

the global coordinate system: 

 

 

 

or along the X axis: 
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The third variant of a 

movable support causes 

problems when describing 

the boundary conditions 

because the direction of 

the reaction of this support 

is not parallel to any axis of 

the global coordinate 

system.  
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It is important because equilibrium equations: 

 

 

   leading to Ku=p were written in the global coordinate 

system.  In a support with movement not parallel to any 

axis of the global coordinate system (skew supports) we 

have to write the boundary conditions in the system x'y' 

connected with the support.  It is rotated with respect 

to the global system by an angle α'. 
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We will explain the transformation method for a set of 

equations at a support node to the local system in the 

next section.  Now we will focus on describing the 

boundary condition.  We write the condition of absence 

of a movement along the y' axis: 

Equations  urX = 0, urY = 0, urX = 0, urY = 0 and ury’ = 0  

   describing the boundary conditions give us the values of 

displacements at support nodes.  
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Hence some equations of set Ku=p should be removed, 
because they contain unknown forces acting on support 
nodes (constraint reactions).   

These equations can be replaced by equations of 
boundary conditions.  It is usually done by modifying 
some equations from system Ku=p. 

Let m be the global number of the degree of freedom 
which is eliminated by the boundary condition:  um = 0, 
then we modify the row with the number m in the global 
stiffness matrix K, replacing it by a row containing zeros 
and the value 1 in the column m in the next slide. 
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 or Kr u = pr 

The nodal load vector p should be modified so that 

equation m contains zero on the right side.  

The modified matrices are marked by r. 
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These changes in the stiffness matrix disturb the 

symmetry because  but  when  (comp. Kru=pr). The 

absence of symmetry in the stiffness matrix does not 

prevent the solving of the equilibrium Ku=p but it 

considerably loads the computer memory storing 

coefficients Kij either in the core memory (RAM) or 

external space (disk) which lengthens the solution time 

for a set of equations.  
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Thus, let us try to restore the symmetry of the matrix 

Kr .  Let us note that the terms located in the column 

with the number m are multiplied by the zero value of 

the displacement um. Hence we can insert zeros instead 

of coefficients in the column m (except for one 

coefficient in the row m which has to be equal to 1). 
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If we modify the stiffness matrix in that way, the solution 

of our problem will be the same and the matrix will be a 

symmetric one: 
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Finally, we solve the problem:  Kru=pr 

The matrix Kr is symmetrical and is not singular which 
means that  det(Kr)  0,  if we have properly chosen the 
boundary conditions.  

On the theorem about the value of a strain energy: 

 

 

 we can conclude that the matrix  has to be positive-
define,  then det(Kr) > 0.                                   

Hence the set Kru=pr has one solution. 
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In small finite element systems (programs) the matrix Kr        

is usually left in the form noted proviously.  

Large and complex systems used to solve problems 

described by many thousands of equations usually 

remove rows and columns containing zeros from Kr     

and pr.  This is done to reduce the dimensions of a 

solved problem.  This method of modification of        

requires re-numbering of degrees of freedom of a 

structure.  Because it is not strictly joined with FEM,    

we will not describe it here. 
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Now we are explaining ways 

of transforming an element 

stiffness matrix joined to a 

support node by means of a 

‘skew’ support .  
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We choose the coordinate system x'y' in such a way that 

the direction of a support reaction covers the y' axis and 

the movement will be parallel to the x' axis.  

An alternative choice of the local coordinate system is 

also possible.  

The x' axis is rotated with respect to the X axis of the 

global system by the angle α' which we will deem to be 

positive when the rotation from the X axis to the x' axis 

is anticlockwise.  
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If we write equilibrium equations for the support node r 

in the system x'y', then the boundary condition of this 

support is determined by equation              .  

Let us try to perform the necessary transformation.    

We make use of relations                      and                          

   to pass from the local system of an 

element to the global one. 
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Then we express the nodal forces vector at the node r 

as follows: 

 

 

 

 or in an abbreviated form: 
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Next we transform the nodal displacements vector of 

the support node from the local system to the global 

one as follows: 

 

 

 

 or in a close form: 
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In equation                      and                      we have 

marked: 
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Then we write equilibrium equations for nodes ri and rj 

in the local coordinate system  at the node ri and  at the 

node rj. The transformation of nodal forces vectors and 

nodal displacements vectors of the element e is as  

     

 follows:    for a nodal forces vector,  

  

 or in a developed form 
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for the nodal displacements vector: 

 

 

 

 or 
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Inserting relationship                          into                 

 and the result into                         , we get the equation 

transforming the stiffness matrix of the element e from 

the global coordinate system to the support coordinate 

system: 

 

66 

  eeeee '''' uRKRf
T



u R u
e e e ' ' f K u

e e e

  eee
fRf
T

'' 



AUTHOR:  

J ERZY PODGÓRSKI  

STIFFNESS MATRIX FOR A ‘SKEW’ SUPPORT 

We simplify this equation to the form: 

 

 in which we make use of the substitution: 

 

 

 defining the element matrix in the support coordinate 
system. 
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One of angles α' is most often equal 

to zero because it rarely happens 

that a truss bar joins two support 

nodes supported by a ‘skew’                                  

support.  

The transformation                      

matrix of a zero angle                                            

is a unit matrix.                                  
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Because (c'=1, s'=0), then when the second node is 

described in the global system but we transform forces 

and displacements at the first node ri, the element 

transformation matrix is simplified to the form: 

 

 

 and when the transformation concerns the last node rj 

only: 
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As it has been shown that the existence of ‘skew’ 

supports complicates the simple FEM algorithm 

presented in previous presentation because it requires 

additional transformations of stiffness matrices before 

the aggregation of the global matrix is done. There are 

other simpler, though approximate, methods of solving 

this problem and they will be discussed in the next 

section. 
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Not all kinds of supports applied to support trusses can 

be described by the boundary conditions of types urX = 0, 

urY = 0  and ury’ = 0.   

There are flexible supports which have displacements 

connected with a support reaction, for instance, the 

linear relation of the following type: 
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hrX  is the support stiffness in the direction of the X axis, 

hrY is the support stiffness in the direction of the Y axis. 

The linear spring is a good model of this type of support. 

 

72 

R h urX rX rX 

R h urY rY rY 



AUTHOR:  

J ERZY PODGÓRSKI  

ELASTIC SUPPORTS AND BOUNDARY 

ELEMENTS 

If we treat reactions RrX and 

RrY acting on the node 

supported elastically as 

external forces, then we 

obtain the nodal forces 

vector containing unknown 

displacements urX, urY: 
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The vector p cannot be absolutely used as the right side 

of Ku=p in which unknown values of nodal 

displacements should be on the left side of the equation. 

Now we are transforming the vector p described in 

previous slide in such a way that nodal reactions of the 

elastic node r will be moved to the left side of the 

equilibrium equation: 

 Ks u = pr 

where 
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Ks- the stiffness matrix containing information about 

elastic supports of the structure, 

pr- the nodal forces vector in which the boundary 

conditions written in equation  K0 us = pr  

we can treat the elastic supports as fixed ones after 

transferring the relations which described them to the 

left hand side of the equation) are considered. 
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  The matrix  Ks is written by the equation: 

 

76 



AUTHOR:  

J ERZY PODGÓRSKI  

ELASTIC SUPPORTS AND BOUNDARY 

ELEMENTS 

m - the global number of the first degree of freedom of 

the node r.  With standard numbering m=(r-1)ND+1 

where ND is the number of degrees of freedom of  the 

node.  

For a 2D truss ND=2, the number of the first degree of 

freedom of the node r is equal to m=2r-1. 
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At this stage, the modified matrix Ks contains the 

stiffness of elastic supports which are added to the 

terms coming from the truss element of a structure. 

These sums are located on the main diagonal of the 

matrix in rows describing the equilibrium of the node r. 

Such an interpretation of elastic supports leads to a 

convenient, although simplistic, way of considering fixed 

supports. 

We substitute them for elastic supports with very large 

stiffness, for example H=1×1030 onto the main diagonal.  
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This method was formulated by Irons (1980) who 

multiplies terms lying in a suitable row on the diagonal of 

the matrix K by numbers of the order of 106.  After 

inserting a high value onto the diagonal, it is irrelevant to 

insert zeros in the matrix K and the vector p.  

It is very important for large stiffness matrices which are 

often stored in structures of data different from 

quadratic tables. The simplicity of this method ensures 

that it is commonly used in the computer 

implementation of the FEM algorithm instead of the 

exact method described previously in this presentation. 
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Elastic supports also suggest the use of an element 

which could substitute any elastic constraints and 

fixed supports which should be treated as elastic 

supports with large stiffness. 
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the global coordinates. 
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We can easily obtain the stiffness matrix of such an 

element from the matrix of an ordinary truss element 

described by K’e in the local coordinate system or Ke    

in the global system.  We do it in such a way that                              

we substitute the stiffness of a bar EA/L for the stiffness                             

of the elastic boundary                                  

element kb.  
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In general, the node o of this element is always fixed, so we 

can remove it from the set of equations which allows us to 

treat the boundary element as an element with two degrees 

of freedom:       

     where,  as before     

       c = cos , s = sin . 

When we want to substitute the fixed support for this 

element we accept kb=H.  The value of H depends on the 

computer system in which the program will be started and 

most of all it depends on the type of real numbers.  We can 

take for example H=1×1030 as reference for many systems. 
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As we have already noted in the introduction to this 

Chapter, truss loads which act on elements and do not 

act on nodes directly are temperature loads.  

Now we will show how we can replace this load by 

known loads, that is, concentrated forces acting on the 

nodes of a structure. 
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As we know, the increase in temperature of an element 
causes it to lengthen which, with the assumption of a 
steady increase in the temperature of the whole bar, is 
described by the equation: 

 

 

αt - the coefficient of thermal expansion of the material 
from which the element is made, 

Δto - stands for an increment of temperature in the 
middle fibres (joining centres of gravity of  cross sections 
of an element). 
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We assume a steady increase in temperature in the 

whole section and homogeneity of the material. The 

element has no freedom to grow but is limited by fixed 

nodes, and we obtain an axial force which is set up 

within the element: 

 

 

 E - Young’s modulus of the material, 

 A - the surface area of the cross section. 
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The nodal forces vector of the element due to the 

temperature, written in the local coordinate system xy, is 

equal to: 

 

 

 

 

  

  where  c = cos ,  s = sin .  
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Since forces acting on the nodes are necessary for the 

equilibrium equations, and as it is known, they are of 

opposite direction to other forces acting on elements, 

then we subtract them from other forces while building 

the global nodal forces vector.  

 This is shown in next slide. 
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VECTOR OF NODAL FORCES DUE TO THE 

OWN WEIGHT OF TRUSS ELEMENTS 
The nodal forces vector of the element due to the 

temperature, written in the local coordinate system xy, is 

equal to: 

 

 

 

 

  

  where  c = cos ,  s = sin .  
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VECTOR OF NODAL FORCES DUE TO THE 

OWN WEIGHT OF TRUSS ELEMENTS 
 The dead load (gravity load) can be replaced by a continuous load, evenly 

distributed over the length of the element when the cross-sectional area of the 

element is constant. Furthermore, if we assume that the global Y axis is parallel 

to the direction of gravitational forces, we get a very simple static system 

 The balance of FX  forces leads us to the relationship: FiX = -FjX . 

 It can also be assumed, without making a significant mistake,  

 that these forces are equal to zero FiX = 0, FjX = 0. 

 The balance of forces in the vertical direction and  

 zeroing their moments then gives us simple  

 relationships:  

 FiY = FjY =  AL/2 
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VECTOR OF NODAL FORCES DUE TO THE 

OWN WEIGHT OF TRUSS ELEMENTS 
The vector of forces caused by the weight of the truss 

element a affecting the nodes of the structure f eq will 

therefore contain the components  –FiY  and –FiY 

 

 

 

 

 

 

 

 

 Aggregation of the global vector can be performed as it was shown at 

thermal load with the difference that now we will add forces (because 

they affect the node of the structure) and not subtract.  
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VECTOR OF NODAL FORCES DUE TO THE 

OWN WEIGHT OF TRUSS ELEMENTS 

 Finally, the vector (p) of the right hand side of the equation system 

can be represented as follows:   

    p = pP – pt + pq ,  

where 

pP – is a vector of external concentrated forces applied to structure 

nodes, 

pt – is a vector of thermal forces acting on the element's nodes, 

pq –is a vector of gravitational forces applied to structural links. 
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The final type of truss load, which we will describe, is the 

geometric load  forced displacements of nodes. 
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THE GEOMETRIC LOAD ON A TRUSS 
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THE GEOMETRIC LOAD ON A TRUSS 

We assume that the node r is displaced by the vector d. 

It is necessary to apply forces to the node to cause this 

displacement.  Values of these forces are not known, 

whereas we know components of the displacement of 

the  node r : (*)  urX = dX , urY = dY ,  where dX, dY are the 

components of the vector of the forced displacement d. 

Equation (*) is like the known equations of the boundary 

conditions urX = 0 and urY = 0 but with one difference,  

here we have obtained nonhomogeneous equations. It 

changes the procedure of symmetrisation of the stiffness 

matrix.  
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THE GEOMETRIC LOAD ON A TRUSS 

Previously we inserted zeros into suitable columns of 

the matrix  K which did not induce any consequences. 

At this time we have to keep the components of the 

matrix occurring in this column because they are 

multiplied by given displacements (urX = dX , urY = dY) 

and they are usually not equal to zero. 

Hence transformations of K and p leading to the 

consideration of the geometric load should look as 

follows: 
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THE GEOMETRIC LOAD ON A TRUSS 

We form vectors krX and krY which are suitable columns 

of the matrix K joined with the displacements of the 

node r. Vector krX  is the column with a number equal to 

the displacement global number urX and krY - to the 

displacement global number urY. 

We move the nodal forces due to the known displace-

ments dX and dY to the right hand side of the set of 

equations: 
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THE GEOMETRIC LOAD ON A TRUSS 

There is one difference in boundary conditions.  We put 

known values into the rows of the right hand side vector 

These rows have the global numbers equivalent to the 

degrees of freedom urX and urY.  

After making the above transformations, the following 

set of equations rises:  Kr u = prd  

  Kr - the stiffness matrix modified by the standard 

consideration of the boundary conditions,  

  prd  - the modified vector determined by equation: 

  pd = p  krX dX  krY dY  after inserting known values of 

      displacements. 
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THE GEOMETRIC LOAD ON A TRUSS 

These displacements are:                 
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REACTIONS, INTERNAL FORCES AND 

STRESSES IN ELEMENTS 

After aggregation of the stiffness matrix, consideration of 

the boundary conditions and building the nodal forces 

vector, we obtain the set of linear equations in forms :   

Kr u = pr , Ks u = pr , Kr u = prd . 

 with a positively determined symmetric matrix.  

The solution of the set of equations is the nodal 

displacements vector of a structure. 
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REACTIONS, INTERNAL FORCES AND 

STRESSES IN ELEMENTS 
Knowing nodal displacements allows us to determine 

control sums of nodes and support reactions in the 
support nodes in a very simple way. And then we make 
use of equation Ku = p in which the matrix K does not 
contain any information about the support constraints. 

 

The vector of reactions r should contain zeros at free 
nodes and values of reactions at support nodes. If we 
assume the occurrence of the local coordinate system in 
some nodes (the ‘skew’ supports), then the components 
of reactions will be expressed in the local coordinate  
       system. 
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REACTIONS, INTERNAL FORCES AND 

STRESSES IN ELEMENTS 

Since numerical errors resulting from approaching values 

of numbers stored in the computer memory increase 

during the solution process, the control sums are rarely 

equal to zero and they are most often small numbers, for 

example the order of 1×1010. 

Components of the global displacements vector enable 

the building of global displacements vectors for the 

elements. 
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REACTIONS, INTERNAL FORCES AND 

STRESSES IN ELEMENTS 

 The geometric load  

 included into the  

 global stiffness  

 matrix. 
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REACTIONS, INTERNAL FORCES AND 

STRESSES IN ELEMENTS 

Since the components of the vector u are not always 

written in the global coordinate system (the ‘skew’ 

supports), then it can happen that some components of 

ue are expressed in the global system and others in local. 

We standardise the description of the vector bringing 

down the components to the global coordinate system 

by taking advantage of equation                       . 
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REACTIONS, INTERNAL FORCES AND 

STRESSES IN ELEMENTS 

It should be noted that the standarisation is only 

necessary for elements joined to a node which is 

supported by a skew support. 

Nodal displacements of an element allow the internal 

force N in a truss element to be calculated quite easily.  
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REACTIONS, INTERNAL FORCES AND 

STRESSES IN ELEMENTS 

We can either make use of                            which  

 requires knowledge of displacements in the local 

coordinate system of the element or on the basis of Eqn.                

Fix N,   Fjx N,   K’e u’e = f’e  and  f’e = (Re)T f’e  we 

search the relationship: 

 
 

     

 where  c = cos ,  s = sin .  
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REACTIONS, INTERNAL FORCES AND 

STRESSES IN ELEMENTS 

Stresses in the truss element, assuming that the bar is 

homogeneous, are the axial stresses only which can be 

calculated using a simple relationship: 
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REACTIONS, INTERNAL FORCES AND 

STRESSES IN ELEMENTS 

If the element is loaded with a temperature gradient, 

then the correction coming from thermal expansion of 

the material should be taken into consideration: 

 

 

 

 

These calculation completes the static analysis of the 

truss. 
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