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Introduction 

Although 3D truss structures have been around 
for a long time, they have been used very 
rarely until now. They are difficult to solve. 
Though a series method simplifying the 
calculation of internal forces has been devised 
for statically determined plane trusses, in case 
of space trusses, only the method of nodal 
equilibrium has remained.  



Introduction 

Large sets of equations which are generated by 
this method for space trusses have 
discouraged engineers from designing this 
type of structure. 3D structures looking like 
trusses, in fact, are seldom trusses. For 
instance support columns of overhead power 
lines are most often space frames because 
they keep their geometric stability with bent 
elements which don’t exist in classical trusses.  



Introduction 

Both the use of computers and new methods of 
statics analysis of a structure making use of 
new technical possibilities (the finite element 
method is one of the main methods among 
them) have enabled considerable progress in 
designing space trusses. 

One of the most popular uses of these 
structures is in structural roofs. Examples of 
space trusses are presented in the next slide. 
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Notation and basic 
relations 

The node of a space truss has three degrees of 
freedom because in order to describe its 
movement, we have to give three components 
of a displacement vector. The displacement 
vector and forces acting on an element of the 
space truss are shown in next figure. As in  
previous presentation components of forces 
and displacements vector are collected in 
column matrices which will be called vectors. 

 



Notation and basic 
relations 

• nodal displacements vector of the first node i 
in the global and local coordinate system: 

 

 

• vector of nodal forces acting at the first node i 
in the global and local coordinate system: 
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Notation and basic 
relations 

The above vectors form forces and 
displacements vectors of an element: 

• vector of the nodal displacements of an 
element e with the node i and j is written in 
the global and local coordinate system: 
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Notation and basic 
relations 

• vector of the nodal forces of an element e in 
the global and local system: 

 

f
f

f
e i

j

iX

iY

iZ

jX

jY

jZ

F

F

F

F

F

F










 



























f
f

f
'

'

'
e i

j

ix

iy

iz

jx

jy

jz

F

F

F

F

F

F










 





























Notation and basic 
relations 

Global system 



Notation and basic 
relations 

Local system 



The element stiffness 
matrix of a space truss 

The relationship between nodal forces and 
nodal displacements for a space truss is 
identical to that for a plane truss if we analyse 
it in the local coordinate system. Obviously, 
the third force is Fiz or Fjz but the equilibrium 
equation of moments with respect to the y 
axis results in the zero value of this force: 

 



The element stiffness 
matrix of a space truss 

F F F F Fx ix jx ix jx      0

F F F Fy iy jy iy      0 0
after considering eq. f

F F F Fz iz jz iz      0 0
after considering eq. e

Mx  0

M F L Fy jz jz     0 0

M F L Fz jy jy     0 0



The element stiffness 
matrix of a space truss 

The relationship between an axial force and 
displacements which is identical to the 
relation presented in previous presentation 
(comp.                     ) allows us to express the 
searched dependence as follows:  
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The element stiffness 
matrix of a space truss 

The transformation from the local system to the 
global one will be done analogously to the 
transformation performed in case of a 2D 
truss (Eqn.                 ,                       ,                 ). 

In order to complete the transformation to the 
global system, we need the rotation matrix of 
a node Ri, and then we can determine 
components of J similar to 
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The element stiffness 
matrix of a space truss 

The truss 
element 
arrangement 
with regard 
to the global 
coordinate 
system. 

 



The element stiffness 
matrix of a space truss 

Since the location of the y and z axes of the local 
system is not essential for truss elements, we 
will choose the direction of the y axis in such a 
way that it will always be parallel to the XY 
plane of the global system but for bars parallel 
to the Z axis there will be an additional 
assumption that the y axis is parallel to the Y 
axis. 



The element stiffness 
matrix of a space truss 

The rotation from the local coordinate system to 
the global one will be composed of two 
intermediate rotations. First, we rotate the 
system xyz to the intermediate system x''y''z'' 
selected so that the x'' axis is parallel to the XY 
plane and next we rotate the system x''y''z'' by 
an angle γ so that the x'' and X axes are 
parallel. 

 



The element stiffness 
matrix of a space truss 

The first rotation around the y axis gives the 
following result: 
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The element stiffness 
matrix of a space truss 

The second rotation around the z axis leads the 
equations to the global system: 

 

 

 

 

when L''=0 we assume γ=0, hence           and  
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The element stiffness 
matrix of a space truss 

The composition of both rotations which means 

 putting                     into                , gives the 

searched rotation matrix of a node 

 

 

where 
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The element stiffness 
matrix of a space truss 

After multiplying matrices , we obtain the final 
form of the rotation matrix Ri: 
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We calculate the transformation of the block J of 
the element stiffness matrix of the space truss 
from the local coordinate system to the global 
one as in previous presentation 



The element stiffness 
matrix of a space truss 

 

Inserting relations                       and                     
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The element stiffness 
matrix of a space truss 

After the introduction of a convenient notation: 

 

which are called direction cosines of an element, 
we obtain a very simple form of the block J of 
the stiffness matrix: 
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The temperature loads 
for 3D truss 

Forming a loads vector of a truss for 
concentrated forces is identical to 
forming it for a 2D truss. We will 
also not discuss the vector p. We 
will discuss the vector of nodal 
forces due to a temperature load. 
This vector in the local coordinate 
system is similar to the 
components for a plane truss. 
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The temperature loads 
for 3D truss 

The transformation to the global system 
proceeds in agreement with                     in the 
following way: 

 

 

Since a truss element is straight, Ri=Rj, where 
the matrix Ri is defined by                     . 
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The temperature loads 
for 3D truss 

After inserting                     into       and 
multiplying them, we obtain: 

 

                              or 

 

 

The remaining procedure is identical to the one 
employed in case of a plane truss. 
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The boundary element 

In previous presentation, we explained widely 
different types of boundary conditions and 
also elastic boundary elements. Since they are 
very useful elements for modelling many 
different boundary conditions, we will pay 
more attention to them in this chapter 
concentrating on differences between plane 
and space trusses. 

 



The boundary element 

We will discuss the most general elastic element 
with stiffness kb dropping with respect to axes 
of the global system with the angles αX, αY, αZ. 

 

The stiffness matrix of this element in the local 
system is analogous to the matrix stiffness of 
an ordinary truss element but this element 
has three degrees of freedom, so the stiffness 
matrix contains only one block J’. 

 

cX X cos cY Y cos cZ Z cos



The boundary element 

 

 

Transforming this element to the global 
coordinate system we obtain a matrix which is 
similar to the one obtained for a plane truss: 
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The transformation of this matrix to the global 
system is analogous to the transformation of the 
block J’: 

The boundary element 

Boundary elements can form for example, an 
element with three different types of stiffness 
kx, ky, kz parallel to axes of the local system 
xyz: 
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Stresses and Internal 
forces 

We present here equations to calculate stresses 
and internal forces in an element: 

 

or 

The transformation of the vector  to the global 
system gives the relationship: 
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Stresses and Internal 
forces 

 

After multiplication it gives components of 
direct stress in an element as follows: 

 

 

where c is the vector of element direction 
cosines:  
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Stresses and Internal 
forces 

Calculating the normal force consists of 
integrating stresses on the surface of a cross 
section with an assumption of homogeneity of 
the stress field 

 

The remaining support reactions are calculated 
with the help of r = Ku - p. We can do it 
exactly in the same way as it has been done 
for the 2D truss. 
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