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Introduction 

The correct choice of model for a structure is 
very important for quality and exactness of 
the results obtained. The choice of frame or 
truss (for example, a truss with fixed nodes) is 
often subjective and it depends on experience 
and intuition of the analyst. 

In this chapter, we will present the following 
model of a bar structure - a 2D frame which 
gives more possibilities. 



Introduction 

The element of a 2D frame is more general than 
a truss element presented in Chapter 2 
because with help of this element we can also 
model ideal truss structures (articulated 
connection of elements at nodes). We can 
simply say that a frame is a structure whose 
bars can be bent while truss elements can be 
only compressed and stretched.  



Introduction 

It has the following consequences: 

• bar (an element) of a frame can be loaded 
between nodes, 

• modelling of different types of loads is 
possible, 

• connection of an element with a node can be 
a fixed or an articulated connection, 

• node of a 2D frame has 3 degrees of freedom, 

 



Introduction 

In the case of plane frames, we will neglect 
index Z of rotation angles in our notation 
because all rotation angles on the plane XY 
(which we will use to describe the structure) 
are rotations with respect to the Z axis. Let us 
assume that a frame element is straight and 
homogeneous which means that it is made 
from a homogeneous material and has a 
constant cross section.  



Introduction 

the global coordinate system 



Introduction 

the local coordinate system 



The element stiffness 
matrix for a 2D frame 

We group nodal displacements and forces in 
column matrices just as we did previously. 
They are called vectors: 

• displacement and nodal forces vector of the 
first node i and the last node j in the local 
system  
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The element stiffness 
matrix for a 2D frame 

• element displacement vector                             
in the local coordinate system 

 

 

element forces vector in the                              
local coordinate system 
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The element stiffness 
matrix for a 2D frame 

We can also describe all the vectors      
formulated above in the global system: 
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The element stiffness 
matrix for a 2D frame 

As in the previous chapters, the relationship 
between nodal forces and nodal 
displacements will be of great importance. 
This relation (analogous to a truss) in the local 
coordinate system has the form: 

 

and in the global system 
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The element stiffness 
matrix for a 2D frame 

At the moment, we will concentrate on 
searching for the stiffness matrix K’e in the 
local coordinate system and next its 
transformation to the global system. 

Equilibrium equations of the element lead to the 
following relations between nodal forces: 

 F F F F Fx ix jx ix jx      0
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The element stiffness 
matrix for a 2D frame 

It has been shown that three equations are 
unable to calculate six components of the 
vector . The discussion concerning element 
strains will provide these missing equations. 
The deformation caused by the axial forces Fix 
and Fjx is identical to the deformation of a 
truss element, hence we take advantage of 
previously determined dependence: 
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The element stiffness 
matrix for a 2D frame 

We will obtain the remaining equations when 
we consider the flexural deformation of an 
element and the relationship between 
shearing forces and bending moments. The 
well-known relationship between curvature 
and bending moment is: 

 

 

 1

1

2

2

2
3

2




























d y

dx

dy

dx

M x

EJ z



The element stiffness 
matrix for a 2D frame 

ρ - the radius of a curvature, 

E - Young’s modulus of a 
material, 

Jz - the moment of inertia of an 
element cross section  
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The element stiffness 
matrix for a 2D frame 

The equilibrium of one section of a bar in 
bending gives the equation: 
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Since we are dealing with linear structures 
with small deflections, we assume dy/dx<< 1,             
which simplifies the relationship between 
curvature and bending moment  to the well-
known form: 



The element stiffness 
matrix for a 2D frame 

The opposite sign of the right side of                    
to the one that we have usually assumed, 
comes from the sense of the y axis of the local 
coordinate system which is orientated 
anticlockwise in our assumptions. 

Differentiating this equation twice, we obtain 
the relationship: 
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The element stiffness 
matrix for a 2D frame 

 

qy(x) denotes the distributed load which is 
perpendicular to the axis of an element. Here 
the element is free from nodal loads, thus 

Finally, we obtain the set of differential 
equations: 
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The element stiffness 
matrix for a 2D frame 

After integrating relations               we obtain the 
following equations: 

• bending line of the frame element: 

 

• bending moment: 

 

• shearing force: 
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C1 ... C4 are integration 
constants which should 

be determined on the 
basis of boundary 

conditions. 



The element stiffness 
matrix for a 2D frame 

We have four boundary conditions: 

• at node i , x=0: 

 

 

• at node j , x=L: 
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The element stiffness 
matrix for a 2D frame 

After inserting these conditions into 

                                                   , we obtain the  

   following values of the integration constants: 
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The element stiffness 
matrix for a 2D frame 

Hence after putting the above equations into 

                                   and                         we obtain: 
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The element stiffness 
matrix for a 2D frame 

Finally, tabulating equations                               , 

                                and from the previous slide 

    in a suitable sequence we obtain the stiffness 
matrix: 
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The element stiffness 
matrix for a 2D frame 

The relationships described by equations 

 

    

 

 

are called transformation formulae of the 
displacement method in structural mechanics 
(in some other form). 
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The stiffness matrix in the 
local coordinate system 

The transfer of the matrix to the global 
coordinate system is done according to rules 
analogous to the rules described for 2D truss 
element. In order to obtain the transformation 
matrix of an element, we need Ri that is, the 
transformation matrix from the local system 
to the global one for the node i.  

 



The stiffness matrix in the 
local coordinate system 

Since the third degree of freedom is a rotation 
with respect to the z axis which does not 
change its location because it is always 
perpendicular to the plane xy, the rotation will 
be the same as for a truss element: 
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The stiffness matrix in the 
local coordinate system 

In accordance that the frame element is straight, 
the transformation matrix of the node j is 
identical to Ri which leads to the final form of 
the element stiffness matrix: 

 

R
e

c s

s c

c s

s c































0 0 0 0

0 0 0 0

0 0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 1

After multiplying matrices 
                              we obtain 
the stiffness matrix of a 
frame element in the 
global coordinate system. 
Unfortunately, its form is 
rather complex.  
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The stiffness matrix in the 
local coordinate system 
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Static reduction of the 
stiffness matrix 

Frame elements are not always joined at a node 
ensuring the agreement of all displacements 
of nodes and in the bar section at this node. 
Articulated joints shown in next figure are 
examples of such incomplete connections. 

At this joint, the angle of the nodal rotation does 
not influence the rotation of the element 
section of a node. The latter e2 can rotate 
independently of the node. 



Static reduction of the 
stiffness matrix 

 

 

 

 

 

 

The element joint scheme with one element 
able to rotate (an articulated joint). 

 



Static reduction of the 
stiffness matrix 

We determine the unknown angle of the 
rotation of such an element using an 
additional equation which is given by the 
equilibrium condition of moments in a joint. 
Hence we can reduce the number of degrees 
of freedom of the element because the 
additional equilibrium condition allows us to 
eliminate one displacement from the set of 
equations. 

 



Static reduction of the 
stiffness matrix 

Example 1 - articulated connection. 

 

 

Additional equilibrium condition of a section at 
the node i : Mi = 0 leads, after considering  

    equations              ,               ,                 

 

    to conditions: 
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Static reduction of the 
stiffness matrix 

 

 

we calculate the required value of the rotation 
angle of the section at the node i: 
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Static reduction of the 
stiffness matrix 

After putting this result into                    and 
taking into consideration matrix K’e we obtain: 
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Static reduction of the 
stiffness matrix 

The new stiffness matrix of an element with the 
joint at the node i: 
 

 

Superscripts (3,i) 
indicate that the third 
degree of freedom is 
eliminated at the first 
node. 



Example 2 - moveable connection. 

 

 

Additional equilibrium condition of a section at 
the node j: Fjx = 0 leads to condition: 

    Fix = 0 

it does not change the relations for the 
remaining nodal forces. 

 

 

Static reduction of the 
stiffness matrix 



Static reduction of the 
stiffness matrix 

The stiffness matrix of such an element takes 
the following form: 
 

 

Superscripts (1,j) 
indicate that the first 
degree of freedom is 
eliminated at the last 
node. 



Static reduction of the 
stiffness matrix 

The above process is called the static reduction 
of a stiffness matrix. Now we will give the 
matrix notation of an operation leading to a 
reduced stiffness matrix. For the sake of 
simplicity, we assume that the last degree of 
freedom of an element is the eliminated 
degree of freedom.  

 



Static reduction of the 
stiffness matrix 

Nodal forces, nodal displacements vectors and 
the stiffness matrix are divided into blocks: 

 

 

 

where according to the symmetry of the matrix 
we have: 
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Static reduction of the 
stiffness matrix 

        is the matrix 1x1 and thus it is a scalar, the 
blocks  and  are also scalars. The results of the 
multiplication of previous matrix blocks are: 

 

From f0 equation we calculate: 

and after inserting into f1 equation we obtain: 

                                            or 

K’’ - the condensed element stiffness matrix. 
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Static reduction of the 
stiffness matrix 

Vector  of an element load still remains to be 
determined. We obtain it by composing both 
the load vector  of an element with rigid 
connections with nodes and the vector  of the 
load caused by displacements of nodes free 
from constraints: 
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Static reduction of the 
stiffness matrix 

Since                                   then: 

 

 

and hence 

 

 

because other displacements contained in       
are equal to zero.  
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Static reduction of the 
stiffness matrix 

Finally, we obtain 

 

 

In this way, we can eliminate any degree of 
freedom but it requires some more complex 
transformations. We leave this problem to be 
solved by the reader. 
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Boundary conditions of 
plane frame structures 

Supports for plane frames include articulated 
and fixed supports all listed in presentation 2. 
The latter ones prevent the rotation of a 
support node. Symbolic notation of these 
supports and the boundary conditions 
describing them are shown in next slides. 

For non-typical supports, we propose to 
consider the use of suitable boundary 
elements instead of these supports. 

 



Boundary conditions of 
plane frame structures 

Y

X

Mr

RrY

b) rigid-movable support (a displacement in the direction of the global axis)X 

r

u   rY = 0
r = 0

RrX

Y

Y

X

X

Mr

Mr

RrY

RrX

a) rigid support

c) rigid movable support (a displacement in the direction of the global axis)Y 

r

r

u   rX = 0

u   rY = 0

u   rX = 0

r = 0

r = 0



Boundary conditions of 
plane frame structures 
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Boundary conditions of 
plane frame structures 
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Boundary conditions of 
plane frame structures 

Considering boundary conditions requires the 
modification of a global stiffness matrix of a 
structure and it is done identically as for a 
plane truss, thus, we will not describe the way 
of modifying this matrix here. A whole range 
of other supports such as moveable skew 
supports and elastic supports considered 
analogously to supports of trusses described 
for plane truss is also possible. 

 



Boundary elements of 2D 
frames 

Introducing a boundary element is a convenient 
way to avoid problems connected with the 
consideration of different, non-typical 
boundary conditions. It allows, in fact, us to 
model fixed and fixed-movable supports with 
approximate exactness and to substitute 
elastic supports. 

 



Boundary elements of 2D 
frames 

Now we will present a single elastic support 
inclined at some angle. The scheme of this 
element and notations used are shown here: 



Boundary elements of 2D 
frames 

Stiffness of springs: hrx and hry are forces which 
should be applied to their ends in order to 
induce unitary extensions. Rotation stiffness 
of a support gr is a moment necessary to 
induce the rotation of the node r equal to one 
radian. 

 



Boundary elements of 2D 
frames 

The stiffness matrix of such an element in the 
local coordinate system has the form: 
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Boundary elements of 2D 
frames 

Its transformation to the global system is done 
analogously to the case of normal frame or 
truss elements except that it concerns one 
node only                         . The rotation matrix is  

    given by                . Hence we can write the  

    equation transforming the matrix to the 
global system: 
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Boundary elements of 2D 
frames 

After taking into consideration                and  

 

                             we obtain: 
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Boundary elements of 2D 
frames 

If we model flexible supports we ought to 
assume high stiffness of a suitable spring. In 
most cases, stiffness of the order of 11030 
assures similarity between results obtained 
with this method and the results obtained 
with the exact method. 

 



Internal forces due to a 
static load 

The variety of loads which can act on a frame 
structure is greater than it was in the case of a 
truss. Frame elements can be affected by 
concentrated (forces, moments), distributed 
(pressure, moment loads) and temperature 
loads. The formulation of equilibrium 
equations requires substitution of internode 
loads for an equivalent set of concentrated 
forces and moments acting on nodes.  

 



Internal forces due to a 
static load 

Equation                                             define 

    displacements of an element bending in the 
direction of the y axis of the global system. 
After adding the equations describing the 
displacements in an axial direction, we obtain 
relations defining the                                
displacements vector for                                    
any point between nodes 
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Internal forces due to a 
static load 

N - the rectangular matrix of 
shape functions. It contains 
two blocks: 

Ni(x) - matrix of the shape 
functions for the first node, 

Nj(x) - matrix of the shape 
functions for the last node. 
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Internal forces due to a 
static load 

We can obtain both matrices from equations 

                                      and                    : 
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Internal forces due to a 
static load 

 

 

 

 The convenient non-dimensional coordinate         

                  is introduced here. Non-dimensional 
displacement functions         (i = 1,2 ... 6)) and 
their derivatives         ,          are surveyed on 
the following slides.  
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Internal forces due to a 
static load 

ω1 = 1 – ξ 

 

 

 

 

 

Shape function of frame element with parallel 
displacement in node i.  



ω2 = ξ 

 

 

 

 

 

Shape function of frame element with parallel 
displacement in node j.  
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Internal forces due to a 
static load 



ω3 = 1 - 3ξ2 + 2ξ3 

 

 

 

 

 

Shape function of frame element with 
perpendicular displacement in node i.  
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Internal forces due to a 
static load 



ω4 = ξ2(3 - 2ξ) 

 

 

 

 

 

Shape function of frame element with 
perpendicular displacement in node j.  
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Internal forces due to a 
static load 



ω5 = ξ(1 - 2ξ + ξ3) 

 

 

 

 

 

Shape function of frame element with rotation 
in node i.  
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Internal forces due to a 
static load 
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Shape function of frame element with rotation 
in node j.  
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Internal forces due to a 
static load 

1 



ω’1 = - 1 

 

 

 

 

 

The rotation function of frame element with 
parallel displacement in node i. 
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Internal forces due to a 
static load 



ω’2 = 1 

 

 

 

 

 

The rotation function of frame element with 
parallel displacement in node j. 
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Internal forces due to a 
static load 



ω’3 = - 6ξ(1 - ξ) 

 

 

 

 

 

The rotation function of frame element with 
perpendicular displacement in node i. 
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Internal forces due to a 
static load 



ω’4 = 6ξ(1 - ξ) 

 

 

 

 

 

The rotation function of frame element with 
perpendicular displacement in node j. 
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Internal forces due to a 
static load 



ω’5 = 1 - 4ξ + 3ξ2 

 

 

 

 

 

The rotation function of frame element with 
rotation in node i. 
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Internal forces due to a 
static load 



ω’6 = - ξ(2 - 3ξ) 

 

 

 

 

 

The rotation function of frame element with 
rotation in node j. 
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Internal forces due to a 
static load 



ω’’1 = 0 

 

 

 

 

 

The bending moment function of frame element 
with parallel displacement in node i. 
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Internal forces due to a 
static load 



ω’’2 = 0 

 

 

 

 

 

The bending moment function of frame element 
with parallel displacement in node j. 
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Internal forces due to a 
static load 



ω’’3 = - 6 + 12ξ 

 

 

 

 

 

The bending moment function of frame element 
with perpendicular displacement in node i. 
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Internal forces due to a 
static load 



ω’’4 = 6 - 12ξ 

 

 

 

 

 

The bending moment function of frame element 
with perpendicular displacement in node j. 
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Internal forces due to a 
static load 



ω’’5 = - 4 + 6ξ 

 

 

 

 

 

The bending moment function of frame element 
with rotation in node i. 
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Internal forces due to a 
static load 



ω’’6 = - 2 + 6ξ 

 

 

 

 

 

The bending moment function of frame element 
with rotation in node j. 
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Internal forces due to a 
static load 



Internal forces due to a 
static load 

Let us consider now the bar (an element) of a 
plane frame loaded with static loads 

 



Internal forces due to a 
static load 

We will find nodal forces       by making use of 
conditions of element equilibrium. We will use 
the principle of virtual work here: 

 

                                  - the work of nodal forces, 

 

 

           - the work of external forces (static loads). 
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Internal forces due to a 
static load 

Concentrated forces and moments can also be 
analysed by describing them in the following 
way: 

 

 

 

where δ(xo) is Dirac’s delta. 
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Internal forces due to a 
static load 

The Dirac’s delta δ(xo) is defined as: 

 ,0)(  oxx

,)(  oxx

,0)(  oxx

while x<x0; 

while x=x0; 

while x>x0; 



Internal forces due to a 
static load 

The element equilibrium is maintain when  

Ln+Lz = 0, which means: 

 

 

where q(x) is the vector of external loads: 
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Internal forces due to a 
static load 

Putting the expression describing the element 
displacements vector 

 

                                   into 

 

    we obtain relations: 
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Internal forces due to a 
static load 

These relations enables us to replace loads 
acting on elements by loads acting on nodes. 
It should be noted here that there are forces 
acting on the nodes in the equilibrium 
equations and that these forces act against 
those acting on the element thus, they should 
be subtracted from the nodal forces vector of 
the structure. 



Internal forces due to a 
static load 

We check the effectiveness of equation 

                            for three simple examples when: 

• the load with a concentrated force is applied 
to the centre of an element, 

• the load with a concentrated moment, 

• the distributed load which is constant for the 
whole element. 
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Internal forces due to a 
static load 

Example No 1. 

 

 

 

 

 

The frame element loaded with a concentrated 
force. 

 



Internal forces due to a 
static load 

We introduce a non-dimensional coordinate  to 
make the calculations more convenient and 
write the concentrated force as follows: 

 

 

     

and after putting it into Eqn.                           we 
obtain: 
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Internal forces due to a 
static load 
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Internal forces due to a 
static load 

Example No 2. 

 

 

 

 

 

The frame element loaded with a concentrated 
moment. 

 



Internal forces due to a 
static load 

We write the concentrated moment applied to 
the centre of an element by using Dirac’s 
delta: 

 

 

     

and after putting it into Eqn.                           we 
obtain: 
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Internal forces due to a 
static load 
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Internal forces due to a 
static load 

Example No 3. 

 

 

 

 

 

The frame element loaded with a uniformly 
distributed load. 

 



Internal forces due to a 
static load 

The continuous load uniformly distributed on 
the whole length of an element gives a load 
vector: 

 

 

 

and after putting it into Eqn.                           we 
obtain: 
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Internal forces due to a 
static load 

 

 

 

 

 

which means that 
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Forces caused by a 
temperature load 

The action of a temperature on frame elements 
can cause flexion. This happens when the 
temperature field is not homogeneous in the 
cross section. In the case of a truss, the flexion 
of bars did not cause increasing nodal forces 
because truss elements are connected by 
means of jointed nodes.  

 



Forces caused by a 
temperature load 

Bars of frame structures can make a node 
rotate, hence we have to determine forces at 
the node in the element undergoing the 
action of the non-uniform temperature field. 

Let us consider an element of which the upper 
fibres are affected by an increase in a 
temperature Δtg, and the lower fibres are 
affected by an increase in a temperature Δtd. 



Forces caused by a 
temperature load 

 

 

 

 

 

 

The temperature distribution in the element 
cross section. 



Forces caused by a 
temperature load 

The temperature field can be written as follows: 

 

 

                                             - the increase in the  

    temperature of the middle fibres, 

                             - the difference of temperatures 
between extreme fibres, 

    h - is the height of the cross section, 
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Forces caused by a 
temperature load 

     

     

yd - the distance between the centre of gravity 
and the lower fibres, 

    yg - is the distance between the centre of 
gravity and the upper fibres. 
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h
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Forces caused by a 
temperature load 

Strains of the element fibres induced by the 
temperature field are equal to 

 

 

    where αt is the expansion coefficient of the 
material. 
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Forces caused by a 
temperature load 

If bars cannot deform freely, then stresses rise 
inside them: 

 

 

    which the internal forces result from: 
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Forces caused by a 
temperature load 

Since the second integral occurring in previous 
equation is the static moment with regard to 
the z axis which crosses the centre of gravity, 
this moment has to be equal to zero. Thus, we 
obtain 

 

 

    like in the case of a truss element. 
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Forces caused by a 
temperature load 

The second internal force caused by 
temperature stresses is the bending moment: 

 

 

The first integral has to be equal to zero similarly 

    to                                            and the second one  

    is the moment of inertia of the cross section 
calculated with regard to the middle axis.  
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Forces caused by a 
temperature load 

Thus, we can write an equation describing the 
bending moment due to temperature stresses 
as 

 

 

    where                   is the moment of inertia of  

    the element section with regard to the z axis 
crossing the centre of gravity of the section. 
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Forces caused by a 
temperature load 

We calculate forces at nodes making use of the 
principle of virtual work just as we did before 
in this presentation: 

 

 

where 
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Forces caused by a 
temperature load 

tt is the vector of the internal 
forces induced by a temperature. 
The zero value of the expression 
in the second row of the vector 
comes from the fact that the 
temperature does not cause 
shearing forces in the elements, 
ε(x) is the vector of 
displacements gradients: 
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Forces caused by a 
temperature load 

 

B is the matrix of derivatives of shape functions: 

                                            . 

On the basis of  

 

 

 

we calculate: 
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Forces caused by a 
temperature load 

         ,          ,             
(i = 1,2 ... 6)) are 
nondimensional 
functions given 
before in this 
presentation. 
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Forces caused by a 
temperature load 

On the basis of                                  we calculate  

    components of the nodal forces vector: 

 

 

After inserting matrices Bi(x) and Bj(x) into  

    equation                   , we obtain 
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Forces caused by a 
temperature load 

where     and      are non-
dimensional coordinates 
at both the beginning 
and end of the action 
interval of the 
temperature load 
(following figure). 
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Forces caused by a 
temperature load 

 

 

 

 

 

 

The temperature loaded frame element. 



Forces caused by a 
temperature load 

In the case when the temperature load is 
constant and occurs along the whole length of 
the element, we obtain the following equation 
from equations of Ni(x) and Nj(x): 
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Forces caused by a 
temperature load 

                   , 

 

 

                                        and 

 

These equations describe internal forces acting 
on the element. Forming the load vector we 
should subtract components of the vector from 
suitable components of the global vector. 
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