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Examples of frame system   

A three-dimensional frame structure is the most 
general type of bar structures. Elements of a 
space frame can serve for modelling of all the 
previously described structures (2D and 3D 
trusses, 2D frames) and some others such as 
grillworks, beams broken in a plane and 
loaded perpendicularly to its plane, etc.  
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3D element local 
coordinate system 

Any node of a space structure has six degrees of 
freedom which means that it can submit to 
three independent displacements and three 
rotations.  

Hence a frame element has twelve degrees of 
freedom. 

 



3D element local 
coordinate system 

The local coordinate system has to be chosen in 
such a way that axes y and z are the principal 
axes of a cross section because it simplifies 
the discussion of a bending of problem. 
Bending of such an element can be analysed 
as two independent phenomena of bending in 
planes xy and xz. 

 



3D element local 
coordinate system 
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3D element local 
coordinate system 
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Nodal displacements 
vectors 
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• nodal displacement vector of 
an element in the local 
coordinate system 



Nodal displacements 
vectors 

• u'i - displacement 
vector of the node i in 
the local coordinate 
system 

• u'j - displacement 
vector of the node j in 
the local coordinate 
system 
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Nodal forces vectors 

ie

j

 
    

f
f

f

• nodal force vector of an 
element in the local system 



3D element local 
coordinate system 
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• f'i - force vector of the 
node i in the local 
coordinate system 

• f'j - force vector of the 
node j in the local 
coordinate system 

 

 



Stiffness matrix 

relationship between nodal forces and 
displacements 

e e e  f K u
• Kʹe - square and 

symmetric matrix with 
dimensions 12x12 

 

 



Stiffness matrix 

Most components of this matrix can be 
calculated on the basis of the results obtained 
for a 2D frame. Since the bending in principal 
planes of the cross section is independent, we 
will split the deformation of the element of a 
three-dimensional frame into a few simpler 
form 

 



Deformation of the 
element of a 3D frame 

• axial tension which is identical to that in a 
truss, 

• bending in the xz plane which is similar to the 
states of a 2D frame; modifications concern 
the signs of internal forces, 

• torsion. 

 



Torsion 

dependence between a nodal torsion moment 
and a torsion angle of an element is quite 
simple and resembles the relation between an 
axial force and an element extension: 
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G - Kirchhoff’s (shear) modulus 



ixjxx   - increase the torsion angle due to 
the torsion moment  Mx 
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Torsion 



The constant C has the dimension of a moment 
of inertia and is equal to the polar moment of 
inertia for circular-symmetric sections (comp. 
Jastrzębski et al. (1985)) but for other sections 
it should be calculated by use of quite 
complex methods (comp. Timoshenko and 
Goodier (1962)) 



Stiffness matrix 

relation between the nodal rotations around the 
x axis and nodal torsion moments 
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the above equations are the searched relation 
which allows us to write the element stiffness 
matrix.  



Senses of nodal forces caused by unitary nodal 
displacements, which allow us to determine 
signs of the expressions of the stiffness matrix 
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Stiffness matrix 
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Tranformation of the 
stiffness matrix 

The transformation method of the matrix of a 
frame element is analogous to the 
transformation of an element of a 3D truss but 
the third rotation around the x axis of the 
local system is necessary in order to lead axes 
y and z to the position of the principal central 
axes of inertia of an element cross section. 
Such a choice of local axes is very important 
for building the stiffness matrix 



The location of an element in space 

Tranformation of the 
stiffness matrix 
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Building the 
transformation matrix 

transformation of a certain displacement vector 
u'i from the local system to the global one by 
the composition of three rotations: 
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Building the 
transformation matrix 
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rotation matrix around the x 
axis by an angle α 

rotation matrix around the y' 
axis by an angle β 

rotation matrix around the z'' 

axis by an angle γ 
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Use of a direction vector 

direction vector ey which is located on the y axis 
of the local system and its modulus is equal to 
unity (such a vector is called a basic vector or 
a versor of an axis). Hence we have 



Use of a direction vector 

Hence we have: 

vector of the x axis of the local system determined 
on the basis of element coordinates (its 
components are direction cosines of the element) 

 

 

given direction vector of the element 
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Use of a direction vector 

Since the system xyz is the right cartesian 
coordinate system, then the versors of this 
system are orthogonal. Thus, we can write 

 

and we calculate 
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Use of a direction vector 

Since any vector can be presented as a sum of 
products of its coordinates and versors, then 
we obtain: 

 

 

 

or less  
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Use of a direction point 

 

Here we present one of the possibilities of 
simplifying the way of passing the direction of 
an element axis which is used in the Autodesk 
Simulation Mechanical (Algor) system. The 3D 
frame element is determined by three points 
(i - the first node, j - the last node, k - the 
direction node). 



Use of a direction point 

The points i, j, k determine a plane in the three 
dimensional space. The axis y of the local 
coordinate system is in this plane. The x axis is 
determined by the line passing through points 
i, j. We find coordinates of versors for such a 
definition of directions of the local axes.  



Xi , Yi , Zi denote coordinates of the point i in the 
global system. If analogy, we denote 
coordinates of points j and k, then the 
element coordinates in the global system are 
equal to: 

Use of a direction point 
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Use of a direction point 

We form the vector v connecting the point i and 
the direction point k  
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Use of a direction point 

The vector product of the vectors ex and v give a 
vector which is perpendicular to the xy plane. 
This vector will be the versor ez 
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The transformation 
matrix of an element 

Nodal displacement vectors and nodal force 
vectors have been grouped so that we can 
divide them into blocks containing either 
displacements or rotations and either forces 
or moments respectively. After this operation 
we can transform every block independently 



The transformation 
matrix of an element 

We obtain the transformation of the stiffness 
matrix to the global system by multiplying 
matrices 
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Ri -  rotation matrix of the 
node i  

Rj - rotation matrix of the 
node j 
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Boundary conditions for a 
3D frame 

 
Boundary conditions existing in 3D frame 

supports are very similar to conditions 
described for two-dimensional frames. 
Differences concerning degrees of freedom 
which do not exist in plane frames are 
obvious. We elaborate only those boundary 
conditions which describe frame supports of 
space structures and which are most often 
applied 



3D frame support types 
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3D frame support types 

Linear moveable support (along the X axis)  
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3D frame support types 

ball-shaped joint 
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3D frame support types 

cylindrical joint 
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3D frame support types 

moveable plane support 
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3D frame support types 

cardan joint 
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Boundary elements 

As in previous, we propose to use elastic and 
fixed boundary elements for modelling these 
constraints. In fact we can use a single 
element of which we can compose a more 
complex support but for convenience we will 
show here the use of the matrix of a versatile 
elastic element with six degrees of freedom 



Boundary elements 
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• hrX, hrY, hrZ - spring 
rates 

• grX, grY, grZ - 
flexural (or torsion)  
stiffness of springs 



Boundary elements 

transformation of matrix to the global system  
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After the multiplication we obtain the stiffness 
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coordinate system 
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• H - stiffness matrix for 
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• G - stiffness matrix for 
a rotation 



Boundary elements 

It is easy to obtain the matrix G from the matrix 
H changing the stiffness of tension of springs 
hrX, hrY, hrZ into the stiffness of bending 
springs grX, grY, grZ 
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