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Introduction 

Structures discussed in the previous chapters 
were modelled by means of bar structures 
whose equilibrium equations as well as their 
geometrical relationships are described with 
the help of differential equilibrium equations 
and whose independent variable is measured 
along the bar axis. 



Introduction 

This rather simple structure lets us get familiar 
with the essence of the FEM and convinces 
the reader that this method is efficient in 
solving very complex and extended problems 
in structural mechanics. Now, we will discuss 
surface structures such as 2D elements, plate 
and shell for which displacements, strains, 
internal forces are the functions of two 
independent coordinates 



Introduction 

Differential equilibrium equations for bar 
structures are simple enough to be integrated. 
Their exact results can be used as element 
shape functions. The situation is quite 
different for surface structures. Partial 
differential equations describing the 
equilibrium of those structures have unique 
solutions only for very simple problems 



Solutions obtained by using the approximation 
method (for example, by expansion in a series) 
are very laborious and they require a lot of 
work and therefore a computer has to be used 
in order to solve a set of equations and sum 
series 

Introduction 



 In such a situation, a numerical method which 
assumes some simplification at the stage of 
formation of element equilibrium equations 
appears to be more effective. That is why the 
finite element method has brought so many 
significant results to continuum mechanics 

Introduction 



Introduction 

The 2D element can be defined as a solid of 
which one dimension (thickness) is 
considerably smaller than the two others and 
whose middle plane (the surface parallel to 
both external surfaces of an element) is a 
plane 



Introduction 



Introduction 

A plate element has also such a shape but the 
2D element differs from a plate the way it is 
loaded. The 2D element can be loaded only 
with the load acting in its plane and by the 
temperature dependent upon the x and y 
coordinates. On the other hand, the plate can 
be loaded with a force perpendicular to its 
surface or any temperature field 



Plane stress and strain 

 

When external surfaces of a 2D element are free 
and this element is thin enough, we can 
assume that  in reference to the whole 
thickness of the element. Then it is said that 
this is a plane stress problem 



Plane stress and strain 

Hence only the components of stress shown in 
Figure are non-zero 



Plane stress and strain 

With regard to the symmetry of a stress tensor 
components of shear stress  and  are equal, 
thus we have three independent components 
of stress which we compose in the stress 
vector 
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Plane stress and strain 

A completely different case occurs when the 
component LZ in Figure is very significant 
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Plane stress and strain 

when h<<LX, LY, LZ, and the support and load 
conditions are constant along the axis which is 
perpendicular to the element. The structure 
satisfying these conditions can also be 
analysed by applying plane state which in fact 
is plane strain. Since the cross dimension of 
the structure prevents the structure 
deformation in the direction perpendicular to 
the cross section 



Plane stress and strain 

thin layer cut out from this structure is in the 
state described by the equation 

 

           comes from the above equations, but the 
first equation allows to calculate the 
component  on the basis of two other 
components of a direct stress. Thus, we have 
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Plane stress and strain 

We also group independent components of the 
strain tensor in a column matrix which we 
have called a strain vector 
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Plane stress and strain 

There is a relationship between vectors σ and ε 
described by constitutive equations whose 
form depends on the model of the material 
which the structure is made of. We deal only 
with elastic isotropic materials which obey 
Hook’s law. Hence we can write the 
constitutive equation as follows 

·σ Dε



Geometric relationships 
 

A certain point can move only on the plane 
during the deformation process and then the 
displacement vector of this point u(x,y) has 
two components 
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Geometric relationships 

Some known relations exist between the 
components of displacement and strain 
vectors 
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which can be presented in the form 

 

D is the matrix of differential operators Eqn. 

 

( , )ε D·u x y

Geometric relationships 



The stiffness matrix of an 
elastic element 

 
Let us divide a continuum into finite elements. 

We will discuss only a triangular 2D element 
and we will choose such elements during 
discretization 



The stiffness matrix of an 
elastic element 

 



The stiffness matrix of an 
elastic element 

every node of an element has two degrees of 
freedom and all nodal forces have two 
components. The local coordinate system xy is 
chosen in such a way that its axes are parallel 
to the axes of the global coordinate system 



The stiffness matrix of an 
elastic element 

nodal and element displacements 
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nodal and element forces 
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The stiffness matrix of an 
elastic element 

Since we look for the dependence between 
nodal displacement and nodal forces vectors 
of an element we apply the principle of virtual 
work which requires giving the relation 
between displacements of points lying within 
the element and displacements of nodes 



The stiffness matrix of an 
elastic element 

Accepting errors coming from approximation, 
we assume that this relationship can be 
written by the function of two variables 

 

 

or the general matrix form 
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The stiffness matrix of an 
elastic element 

Ne(x,y) is the matrix of shape functions of the 
element 

 

 

Ni (x,y), Nj (x,y), Nk (x,y) are the shape functions 
for nodes i, j, k 

 N I I I
e
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The stiffness matrix of an 
elastic element 

Let us now assume the simplest of all possible 
forms of the shape function for the node i 

 

 

ai, bi, ci are constants which we determine on 
the basis of consistency conditions 
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The stiffness matrix of an 
elastic element 

after solving this set of equations, we get the 
values of coefficients of the shape function 

 

in general form 
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The stiffness matrix of an 
elastic element 

general form, after modification depending on 
the change of i into j (or k), allows us to 
determine the coefficients of the shape 
functions for the subsequent nodes. δij means 
the Kronecker’s delta in this equation 



The stiffness matrix of an 
elastic element 

We solve the set of equation by the Cramer 
method 
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The stiffness matrix of an 
elastic element 
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The stiffness matrix of an 
elastic element 

Similarly, if we change the index i into j and 
we find 0

1
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The stiffness matrix of an 
elastic element 

Finally, for node k we have 
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The stiffness matrix of an 
elastic element 

After determining the shape functions of the 
element, let us come back to its strains 
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The matrix B is called a geometric matrix and it 
can be expressed as follows 
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The stiffness matrix of an 
elastic element 



The stiffness matrix of an 
elastic element 

Thus, we have all components which are 
necessary to write an element equilibrium 
equation. We apply the principle of virtual 
work which says that the external work (done 
by external forces - here nodal forces) has to 
be equal to internal work (done by stress) of a 
2D element 
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The stiffness matrix of an 
elastic element 

In this equation the nodal displacement vectors 
of the element being independent of variables 
x and y, are taken to the front and back of the 
integral. Equation can be solved 
independently of element displacements only 
when 
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The stiffness matrix of an 
elastic element 

which, after comparison with the relation 

 

 

gives us the equation determining coefficients of 
the element stiffness matrix 
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The stiffness matrix of an 
elastic element 

Building the element stiffness matrix can be 
considerably easy if we note that this matrix 
divides into blocks 
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in which any of them, for example Kij , can be 
calculated from the equation 
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The stiffness matrix of an 
elastic element 

The above matrix is the stiffness matrix for plane 
stress. where A is the surface of a 2D element; 
b is the thickness of 2D element 
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The stiffness matrix of an 
elastic element 

We obtain the block of the stiffness matrix for 
plane strain accepting the matrix of material 
constants according to equation M αi = δi 
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Since the local coordinate system is assumed in 
such a way that its axes are parallel to the 
global coordinate system, then we do not 
have to transform the stiffness matrix 

 

The stiffness matrix of an 
elastic element 



Element strain and stress 

We also calculate element strains 

 

 

We see that components of the strain vector are 
constant within the element which is the 
consequence of the assumption of linear 
shape functions. This element is called CST 
(constant strain triangle) 
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Element strain and stress 

We determine element stresses from the 
constitutive equation                and equation                                   

                                                                    or 
according to the kind of variant that we deal 
with. It is obvious that strains, just as stresses 
are constant within the CST element 
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A Nodal force vector for a 
distributed load 

 
Loads on 2D elements can be treated as loads 

on plane trusses which means that they can 
be applied to the nodes of a structure. But if a 
distributed load acting on the boundary of an 
element is given, then it should be converted 
to concentrated forces acting on the nodes of 
an element  



A Nodal force vector for a 
distributed load 

Nodal forces representing continuos loads 



A Nodal force vector for a 
distributed load 

Similarly, as in previously we apply the principal 
of virtual work giving the following 
equilibrium equation for this case 
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A Nodal force vector for a 
distributed load 
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A Nodal force vector for a 
distributed load 

- matrix of shape functions for 
displacements of the boundary 
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or in the developed form 
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A Nodal force vector for a 
distributed load 



A Nodal force vector for a 
distributed load 

After taking into consideration the shape 
functions, we obtain 
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A Nodal force vector for a 
distributed load 

For example, let us calculate the nodal force 
vector due to the linear distributed load on 
the edge i-j of value qix, qiy - at the node i and 
qjx, qjy - at the node j. We write such a load 
with the help of a non-dimensional coordinate 
ξ 
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A Nodal force vector for a 
distributed load 

and after inserting the above equation, we 
obtain 
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A Nodal force vector for a 
distributed load 

which after integration gives 
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A Nodal force vector for a 
distributed load 

For a particular case when the load is constant 
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A Nodal force vector for a 
distributed load 

It should be remembered that the calculated 
forces are forces acting on the element. We 
obtain the necessary nodal forces changing 
the sense of vectors which means 

p f
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A Nodal force vector due 
to a temperature load 

 
As in the previous section, we apply the 

principal of virtual work to calculate 
alternative nodal forces replacing a 
temperature load. In accordance with the 
features of a CST element we will take into 
consideration only a constant temperature 
field within the element 



A Nodal force vector due 
to a temperature load 

The suitable equation of virtual work has the 
form 

  t td d      u f D
e et

T
T T

V V

V V

    - stress field in the element which is caused by 
the temperature 

   - strain of the element caused by the change of 
a temperature 
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A Nodal force vector due 
to a temperature load 

Assuming isotropy of a 2D element we obtain 
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A Nodal force vector due 
to a temperature load 

For a plane stress problem this equation is 
simplified to the following relation 

 

 

 

 

where bi ... ck are coefficients of shape functions 
of the CST element 
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A Nodal force vector due 
to a temperature load 

Plane strain gives a slightly different nodal force 
vector 
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A Nodal force vector due 
to a temperature load 

As in previous sections, we should change the 
signs of components of nodal forces before 
applying them to the nodes 
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A Nodal force vector due 
to a temperature load 

We calculate stresses in the element undergoing 
the action of a temperature taking into 
consideration strains caused by the thermal 
expansion of the element 

 

 

1

   1

0

  
  

      
    

σ D ε ε D Bu
e

t t t t



Boundary conditions of a 
2D element 

 
Boundary conditions of a two-dimensional 

structure can be treated analogously to the 
conditions in a plane truss because the nodes 
of both systems have two degrees of freedom 
on the XY plane 



Boundary conditions of a 
2D element 

 



Boundary conditions of a 
2D element 

 
Hence we have: fixed supports (at the node r1) 

and supports which can move along the X axis 
(at the node r2), next supports which can 
move along the Y axis (at the node r4) or skew 
supports (at the node r3).  



Boundary conditions of a 
2D element 

 The boundary conditions for these supports are 
as follows 

node r1:                  ,             ,  

node r2:                   , 

node r4:                  , 

for node r3, where constraints are not consistent 
with the axes of the global coordinate system 
we propose the use of boundary elements 
described in Chapter 2. 
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