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Introduction 

Plates are one of the most commonly used 
elements in structures. They can be found in 
almost every building or mechanical structure. 
The geometric shape of a plate can be defined 
similarly to a 2D element, but they differ in 
the way of loading. Plates are loaded with 
normal loads to their surfaces which cause 
bending. Bending is not present in the case of 
the deformation of the 2D element 



Introduction 

Analytical methods of determining both 
deflections and internal forces were described 
by Euler, Bernoulli, Germain, Lagrange, 
Poisson and especially by Navier in papers 
which appeared at the end of the 18th 
century described by Rao (1982) 



Introduction 

Many important statics and dynamics problems 
of plates were solved by analytical methods 
(mainly by the method of the Fourier series), 
but they are inaccurate both in the case of 
problems with complex boundary conditions 
and complicated shapes of plates. However, 
the finite element method has proved to be 
universal and although it gives approximate 
solutions, they are precise enough for 
practical applications 



equations of the classic 
theory of plates 

We assume that these plates the assumptions of 
the classic theory of thin plates 

a) thickness of a plate is small in comparison 
with its other dimensions; 

b) deflections of plates are small in comparison 
with its thickness; 

c) middle plane does not undergo lengthening 
(or shortening); 



d) points lying on the lines which are 
perpendicular to the middle plane before its 
deformation lie on these lines after the 
deformation; 

e) components of stress which are 
perpendicular to the plane of the plate can be 
neglected 

 

equations of the classic 
theory of plates 



From point d) of the above assumptions it 
follows that the displacement of points lying 
within the plate varies linearly with its 
thickness  
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Thus stains are expressed by the relations 
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The strain vector can be presented in the form 

 

where vector  is the vector of differential 
operators 
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Let us assume that there is a plane stress 
condition in the plate, so the stress vector can 
be determined as follows 

 

 

where D is the matrix of material constants 
determined for plane stress  
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Now we introduce in the expression of internal 
forces (moments and shearing forces)  
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stresses 
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internal forces 

Mx+     dx

Mxy+      dx

Qx+     dx

Qy+     dy

Myx+      dy

My+     dy

dy

dx

qxy(,)

Qx

Qy

Mx

Mxy

Myx





M

y

y





Q

y

y





M

y

yx





Q

x

x





M

x

x





M

x

xy

My

equations of the classic 
theory of plates 



The equilibrium of an infinitesimal plate 
element leads to the set of equations 
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After integration we obtain 

 

 

 

 

 

where D denotes the plate stiffness defined by 
the  equation 
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we also obtain relations for the shearing forces 
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after Inserting equation describing shearing 
forces  we obtain 
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It is a biharmonic partial differential equation 
which should be satisfied by the function of 
deflection w(x,y) within the plate. The 
following boundary conditions should be 
realised at the edges of the plate 

equations of the classic 
theory of plates 



a)    0,    0    on the fixed edge
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In the above equations n defines the direction of 
the line which is perpendicular to the edge 
and Vn is the reduced force. Siła ta łączy 
wpływ momentu skręcającego Mns oraz siły 
poprzecznej Qn na brzegu swobodnym 
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The modification of the boundary conditions is 
necessary here because the fourth order 
cannot be solved for three boundary 
conditions coming from the requirement of 
zero stress on the free edge: 

 Mns = 0, Mn = 0, Qn = 0. 

equations of the classic 
theory of plates 



A finite triangular 
element of a thin plate 

 
Now we show the way of building the stiffness 

matrix of a triangular element of a thin plate  



A finite triangular 
element of a thin plate 

 
We also introduce a few convenient notations 

             - stands for the function of displacement 
of the middle plane of an element; 

             - rotation angle of the element about the 
x axis; 

                - rotation angle of the element about 
the y axis. 
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A finite triangular 
element of a thin plate 

 As seen, the node of a plate element has three 
degrees of freedom. Hence nodal 
displacement vectors of the element in the 
local system can be written as follows 

 

 

 

and an element displacement vector 
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A finite triangular 
element of a thin plate 

 
Directions of both nodal displacements and 

forces are the same, so the nodal forces 
vectors have a similar notation 

 

 

 

Hence we write the nodal force 

 vector of the element as follows 
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A finite triangular 
element of a thin plate 

 
We approximate the surface of the deformed 

element by the polynomial of the third order 
proposed by J.LTocher in 1962 

 

where 
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A finite triangular 
element of a thin plate 

 
We determine the coefficients a1 ... a9 of the 

function w(x,y) from the boundary conditions 
at the nodes i, j, k 
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A finite triangular 
element of a thin plate 

 
After calculating the rotation angles, we obtain 
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Now we insert equation into boundary 
conditions obtaining 

 

where M is the square matrix dependent on 
nodal coordinates of the element 
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A finite triangular 
element of a thin plate 

 



A finite triangular 
element of a thin plate 

 
We can present the solution of equation             

as follows 

where M-1 is the inverse matrix of M. The 
solution of M-1 is possible when which is not 
always the case in our problem because  
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A finite triangular 
element of a thin plate 

 
It means that in cases when the node k of the 

element is on the line described by equation , 
then the matrix M is singular. Thus, the 
problem is solved by changing the local 
coordinate system 

Now we calculate a strain vector  
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A finite triangular 
element of a thin plate 

 
Hence we can make use of the definition of the 

stiffness matrix  
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A finite triangular 
element of a thin plate 

 
After denoting the integration in the above 

equation by  and applying the definition of 
plate stiffness we have 
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After calculating the matrix multiplication inside 
the integration, we have 
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A finite triangular 
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A finite triangular 
element of a thin plate 

 
• While calculating the integration of functions, 

the following relations are helpful 
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A finite triangular 
element of a thin plate 

 The rotation matrix of an element        is equal to 

 

 

 

where Ri, Rj, Rk are the transformation matrices 
of nodes. If we use the same coordinate 
systems for all nodes, then we can use only 
one transformation matrix: Rj = Ri, Rk = Ri, 
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A finite triangular 
element of a thin plate 

 

where ,  and α is the angle between the X axis of 
the global system and the x axis of the local 
system. Value 1 in the first row of the matrix 
Ri is the consequence of a fact that axes Z and 
z are parallel 
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A finite triangular 
element of a thin plate 

 
The plate arrangement in the global coordinate 

system 



The triangular element for which the matrix 
stiffness has been obtained has a convenient 
feature. Namely, it allows us to discrete plates 
of any shape without any difficulty. This 
element joined with a 2D triangular element 
can be used as a shell element 

A finite triangular 
element of a thin plate 

 



A triangular element of a 
thin shell 

As it has been noted at the previous point, an 
element containing 2D triangular and plate 
elements can be used as a shell element. 
Approximating a curved surface (which is the 
middle surface of a shell) with the help of 
plate elements reminds the simplification we 
apply to approach the arc with the help of a 
broken line.  



We intuitively feel that the smaller the curve line 
segments are, the better they replace the 
curve axis of the arc 

 

A triangular element of a 
thin shell 



A triangular element of a 
thin shell 

b

Similarly the smaller the plane shell element 
dimensions and the smaller β angles of 
neighbouring elements are, the better this 
element describes displacements and internal 
forces in the structure 



A triangular element of a 
thin shell 

The exemplary shell division into finite elements 



A triangular element of a 
thin shell 

Connecting displacement and internal force 
vectors of the triangular elements described 
previously, we obtain shell element nodes 
possessing five degrees of freedom 
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A triangular element of a 
thin shell 

The shell element composition of a 2D and plate 
elements 

2D element plate
element

shell
element

supplementary
angle and moment



A triangular element of a 
thin shell 

Simplifying the description of a node movement 
by disregarding the rotation around the axis 
perpendicular to the element leads to the 
singularity of the shell stiffness matrix 
modelled by the elements mentioned before 



A triangular element of a 
thin shell 

This difficulty is solved by assuming three 
components of the rotation and moment 
vectors which requires the evaluation of the 
plate element torsional stiffness. 



A triangular element of a 
thin shell 

Since the torsional stiffness is not important in 
shell statics and dynamics problems, the 
fictitious value of this stiffness is often 
assumed 



A triangular element of a 
thin shell 

Hence the dependence between the torsional 
moments and angles can be presented as a 
variable independent of other nodal forces 
and displacements of an element 



A triangular element of a 
thin shell 

In the above relationship suggested by 
Zienkiewicz (1972), E is Young’s modulus, h is 
the element thickness, A is the area of a cross 
section and α denotes an indemensional 
coefficient which is so small that it does not 
have any significant influence on the solution 
of a set of equations 
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A triangular element of a 
thin shell 

we obtain the stiffness matrix of the triangular 
shell element nodes having six degrees of 
freedom 
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A triangular element of a 
thin shell 

where f'i  and u'i  denote full vectors of nodal 
forces and displacements 
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A triangular element of a 
thin shell 

Every block of the stiffness matrix consists of ‘2D 
element’, ‘plate’ and ‘torsional’ parts 

 Fix     0 0 0 0    ujx  
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A triangular element of a 
thin shell 

Transformation of this matrix to the global 
coordinate system can be done in the way 
described in Chapter 5 in which we present 
the transformation of the stifness matrix of a 
3D frame element with nodes having six 
degrees of freedom just as the nodes of a shell 
element 



A triangular element of a 
thin shell 

The method of obtaining the components of the 
rotate matrix is suitable for the triangular shell 
element whose i and j nodes determine the 
direction of the local x axis and the third k 
node can be a directional point 



A triangular element of a 
thin shell 

The shell element described above is the 
simplest element which enables us to solve 
any shell statics problem. There certainly are 
more complex elements, both plane and 
space elements with at least four nodes 
described in books devoted to this subject 



A triangular element of a 
thin shell 

We must remember about the possibility of 
significant simplification of a shell element 
description in case of axisymmetric structures. 
It is also possible to use cone or curvelinear 
elements with nodes having three degrees of 
freedom (Rakowski and Kacprzyk (1993), 
Zienkiewicz (1972, 1994)) 


