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CHAPTER V. 

STATICS OF A 3D FRAME SYSTEM 
 

 A three dimensional frame structure is the most general type of bar structures. 

Elements of a space frame can serve for modelling of all previously described structures (2D 

and 3D trusses, 2D frames) and some others as grillworks, beams broken in a plane and loaded 

perpendicularly to its plane, etc. A few examples of structures which cannot be modelled by 

presented so far elements but can only be modelled with the help of 3D frame elements are 

presented in Fig.5.1.  

 

Fig.5.1 

5.1. THE ELEMENT STIFFNESS MATRIX OF A 3D FRAME 

 Any node of a space structure has six degrees of freedom which means that it can 

submit to three independent displacements and three rotations. Hence a frame element has 

twelve degrees of freedom. Components of both nodal forces and displacements of the frame 
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element are shown in Fig.5.2. The local coordinate system has to be chosen in such a way that 

axes y and z are the principal axes of a cross section because it simplifies the discussion of a 

bending problem. Bending such an element can be analysed as two independent phenomena of 

bending in planes xy and xz. 

 

 

Fig.5.2 

 Here we will present nodal displacements and forces similarly, that is, in the form of 

vectors (column matrices). 

 The nodal displacement vector of an element in the local system 
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(5.2) 

is the displacement vector of the node i in the local coordinate system, 

u' j

jx

jy

jz

jx

jy

jz

u
u
u

































 -  

 

 

(5.3) 

is the displacement vector of the node j in the local coordinate system. 

 The nodal force vector of an element in the local system 
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(5.5) 

is the force vector of the node i in the local coordinate system, 
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(5.6) 

is the force vector of the node j in the local coordinate system. 

 As usual we look for the relation between nodal forces and displacements in the form: 

f K u' ' 'e e e , (5.7) 
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where the stiffness matrix K 'e  is a quadric and symmetric matrix with dimensions 12x12. Most 

components of this matrix can be calculated on the basis of the results obtained for a 2D frame 

in Chapter IV. Since the phenomena of bending in principal planes of the cross section do not 

influence each other, we will split the deformation of the element of a three-dimensional frame 

into a few simpler forms: 

– axial tension which is identical to that in a truss, 

– bending in the plane xz which is similar to the states of a 2D frame; modifications concern 

signs of internal forces, 

– torsion. 

 As it is seen, torsion of a frame element is a state which has not been described so far. 

The dependence between a nodal torsion moment and a torsion angle of an element is quite 

simple (comp. [8]) and resembles the relation between an axial force and an element extension: 

 x x

L
M
GC

 , (5.8) 

where  x jx ix   is the increase in the torsion angle due to the torsion moment Mx , 

G
E


2 1( )

 - is Kirchhoff’s modulus and C is the torsional resistance. 

 The constant C has the dimension of a moment of inertia and is equal to the polar 

moment of inertia for circular-symmetric sections (comp. [8]) but for other sections it should 

be calculated by use of quite complex methods (comp. [17]). The calculation method of this 

constant for a few often occurring cross sections in engineering practice are given in Appendix 

3. 

 Equation (5.8) allows to write the relation between the nodal rotations around the x 

axis and nodal torsion moments: 

 M
GC
Lix ix jx   , 

 M
GC
Ljx ix jx    . 

 

(5.9) 

 The above equations are the searched relation which allows to write the element 

stiffness matrix. Senses of nodal forces caused by unitary nodal displacements which allow to 

determine signs of the expressions of the stiffness matrix are shown in Fig.5.3.  
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Fig.5.3. The signs of the nodal force vector caused by unitary nodal displacements. 

The element stiffness matrix is presented by equation  
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5.2. TRANFORMATION OF THE STIFFNESS MATRIX TO THE 

GLOBAL COORDINATE SYSTEM 

 The element stiffness matrix should be transformed to the global system. The 

transformation method of the matrix of a frame element is analogous to the transformation of 

an element of a 3D truss presented in Chapter III but the third rotation around the x axis of the 

local system is necessary in order to lead axes y and z to the position of the principal central 

axes of inertia of an element cross section. Such a choice of local axes is very important for 

building the stiffness matrix which has been noted at the beginning of this chapter. The location 

of an element in space, applied types of coordinate systems and rotation angles notations are 

presented in Fig.5.4. 

 

Fig.5.4 

 In Fig.5.4 the following notations are led: ex, ey, ez as basic vectors of axes of the local 

coordinate system and EX, EY, EZ as basic vectors of axes of the global coordinate system. 

They will be helpful in subsequent transformations. 

5.2.1. Use of the rotation angle  for building the transformation 

matrix 

 Now we perform the transformation of a certain displacement vector u'i from the 

local system to the global one by the composition of three rotations: 
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  u R R R ui i    ' , (5.11) 
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is the rotation matrix around the x axis by an angle , 
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(5.13) 

is the rotation matrix around the y' axis by an angle , 
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(5.14) 

is the rotation matrix around the z'' axis by an angle . In equations (5.12), (5.13) and (5.14) 

we have c  cos , s  sin , c  cos , s  sin , c  cos  and s  sin . Equation 

(5.11) can be written in a simpler way: 

u R ui i i ' , (5.15) 

where R R R Ri      is the transformation matrix and the inverse relation is: 

 u R u'i i i
T

, (5.16) 

where        R R R Ri
T T T T
    . 

 With this way of transformation functions of angles  and  can be determined on the 

basis of nodal coordinates of an element (they depend on direction cosines of an element - 

comp. Sec.3.2) and the angle  is an additional parameter which has to be given for all 

elements. 

5.2.2. Use of a direction vector 

 At this moment we will present another way of determining the transformation matrix. 

Let an additional parameter determining an element be a direction vector ey (Fig.5.4) which is 

located on the y axis of the local system and its module is equal to a unite (such a vector is 

called a basic vector or a versor of an axis). Hence we have 
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– vector of the x axis of the local system determined on the basis of element coordinates (its 

components are direction cosines of the element) 
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(5.17) 

– given direction vector of the element 
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(5.18) 

 We look for the third basic vector ez which allows to write the transformation of any 

vector from the local coordinate system xyz to the global one XYZ. 

 Since the system xyz is the right cartesian coordinate system, then the versors of this 

system are orthogonal. Thus, we can write 

e e ez x y  , (5.19) 

and from here we calculate  
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(5.20) 

where 
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are the coordinates of the versor of the local z axis with regard to the global coordinate system. 

 Since any vector can be presented as a sum of products of its coordinates and versors, 

then we obtain: 
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(5.22) 

or less 

u R ui i i ' , (5.23) 
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where Ri is the rotation matrix of a node 
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(5.24) 

5.2.3. Use of a direction point 

 The necessity to give the direction vector in form (5.18) often causes difficulties 

during the input of data. Here we present one of the possibilities of simplifying the way of 

passing the direction of an element axis which is used in the ALGOR system. The 3D frame 

element is determined by three points (i - the first node, j - the last node, k - the direction node) 

in it. The points i, j, k determine a plane in the three dimensional space. The axis y of the local 

coordinate system is in this plane. The x axis is determined by the line passing through points i, 

j. We find coordinates of versors for such a definition of directions of the local axes. Let Xi, Yi, 

Zi denote coordinates of the point i in the global system. If by analogy to them we denote 

coordinates of points j and k, then the element coordinates in the global system are equal to 

L X XX j i  , L Y YY j i  , L Z ZZ j i  , L L L LX Y Z  2 2 2 , (5.25) 

and from here we calculate the components of vector ex: 

e
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 We form the vector v connecting the point i and the direction point k (Fig.5.5): 
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(5.27) 

 

 

Fig.5.5 

 The vector product of the vectors ex and v give a vector which is perpendicular to the 

plane xy. This vector will be the versor ez: 
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w e v x , (5.28) 
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(5.29) 

ezX
Xw

w
 , ezY

Yw
w

 , ezZ
Zw

w
 . (5.30) 

 Now we obtain the coordinates of the versor ey from the vector product of the versor 

ez by ex: 

e e ey z x  , (5.31) 
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 On the basis of results (5.26), (5.30) and (5.32) we can form the transformation 

matrix Ri as in equation (5.24). 

5.2.4. The transformation matrix of an element 

 Now we build the transformation matrix of an element. Nodal displacement vectors 

and nodal force vectors have been grouped so that we can divide them into blocks containing 

either displacements or rotations and either forces or moments respectively. After this 

operation we can transform every block independently 
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(5.33) 

where R i  is the rotation matrix of the node i and R j is the rotation matrix of the node j. Since 

the element is straight, so as it was in previous cases (2D and 3D trusses, 2D frame), we 

assume R i = R j . 

 We obtain the transformation of the stiffness matrix to the global system by 

multiplying matrices identically as in equation Błąd! Nie można odnaleźć źródła 

odwołania.). 

 K R K Re e e e '
T

, (5. 34) 

where R e is determined by equation (5.33). The form of the matrix K e  is too complex in the 

global system, so we will not give it. 
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5.3. BOUNDARY CONDITIONS FOR A 3D FRAME 

 Boundary conditions existing in 3D frame supports are very similar to conditions 

described for two-dimensional frames. Differences concerning degrees of freedom which do 

not exist in plate frames are obvious. We elaborate only those boundary conditions which 

describe frame supports of space structures (Fig.5.6) and which are most often applied. 
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Fig.5.6 

 Modification of the global stiffness matrix (comp. point 2.6) is the way of considering 

boundary conditions just as we have done it in reference to previously described structures. 

5.4. BOUNDARY ELEMENTS 

 A choice of supports possible to be used in a space structure increases if we add 

elastic constraints and „skew” supports. 

 As in previous chapters we propose to use elastic and fixed boundary elements for 

modelling these constraints. In fact we can use a single element described in Chapters II or III 

of which we can compose a more complex support but for convenience we will show here the 

use of the matrix of a versatile elastic element with six degrees of freedom: 
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(5.35) 

where hrX, hrY, hrZ are spring rates and grX, grY, grZ are flexural (or torsion)  stiffness of springs. 

 The transformation of this matrix to the global system is similar to the one presented 

in Chapter IV (equationBłąd! Nie można odnaleźć źródła odwołania.)). Since reactions of 
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our elements are contained in two independent vectors: the vector of support forces and the 

vector of support moments, then the transformation matrix has the form: 

R
R 0
0 R

b r
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 , (5.36) 

where Rr is the rotation matrix of the node given by equation (5.24). After the multiplication 

we obtain the stiffness matrix of the boundary element in the global coordinate system: 
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where H is the stiffness matrix for a movement and G is the stiffness matrix for a rotation: 
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(5.38) 

 It is easy to obtain the matrix G from the matrix H changing the stiffness of tension of 

springs hrX, hrY, hrZ into the stiffness of bending springs grX, grY, grZ. 
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