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Example 2.E1. 

The content of  the example 

 Fig.2.E1.1 shows a 2D truss made from wood (Young’s modulus E=1.2107 kPa), 

loaded with concentrated forces acting on two nodes. The truss is composed of elements (bars) 

with three different cross sections. The bars of a bottom flange (elements No 1, 2, 3) have the 

cross section A-A, the bars of a top flange (elements No 4, 8, 9) have the cross section B-B, 

the cross-braces and the posts (elements No 5, 6, 7) have the cross section C-C. 

Determine the global stiffness matrix of this truss, the vector of global nodal forces, 

internal forces and stresses in the elements. 

 

Fig.2.E1.1 

 Data concerning nodal coordinates and the load of the truss are collected in 

Tab.2.E1.1. Data concerning elements like node numbers (ni, nj), the projections of the 

elements on the axes of the global coordinate system (Lx, Ly), the angles of inclination with 

regard to the axis () and the surface of the cross section (A) are given in Tab.2.E1.2. 
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Tab.2.E1.1 

Node No  

n 

Xn  

[m] 

Yn  

[m] 

PXn  

[kN] 

PYn  

[kN] 

1 0.0 1.0 ------ ------ 

2 3.0 3.0 -3.464 -2.0 

3 3.0 0.625 ------ ------ 

4 6.0 0.25 ------ ------ 

5 8.0 2.0 -3.5 ------ 

6 8.0 0.0 ------ ------ 

 

Tab.2.E1.2 

Elem. No 

n 

Node No  

ni     nj 

LnX 

[m] 

LnY 

[m] 

Ln 

[m] 

n 

[deg] 

Section 

No  

A 

[m2] 

1 1 3 3.0 -0.375 3.02335 -7.125 A-A 2.510-3 

2 3 4 3.0 -0.375 3.02335 -7.125 A-A 2.510-3 

3 4 6 2.0 -0.25 2.01556 -7.125 A-A 2.510-3 

4 1 2 3.0 2.0 3.60555 33.690 B-B 4.010-3 

5 3 2 0.0 2.375 2.375 90.000 C-C 9.010-4 

6 2 4 3.0 -2.75 4.06971 -42.510 C-C 9.010-4 

7 4 5 2.0 1.75 2.65754 41.186 C-C 9.010-4 

8 6 5 0.0 2.0 2.0 90.000 B-B 4. 010-3 

9 2 5 5.0 -1.0 5.09902 -11.310 B-B 4.010-3 
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The solution of  the example 

 We start solving the problem from building the vector of global nodal forces, which is 

very simple when the truss is loaded with concentrated forces only. The data juxtaposed in 

Tab.2.E1.2 are applied to building the vector p: 

    Global 
node 

number 

Global 
number of 
degree of 
freedom 

 

 

  0.0  
1 1  

  0.0   
2 

 

  -3.4641  
2 3  

  -2.0   
4 

 

  0.0  
3 5  

p=  0.0   
6 

 

   0.0  
4 7  

  0.0   
8 

 

  -3.5  
5 9  

  0.0   
10 

 

  0.0  
6 11  

  0.0   
12 

 

 

Since no concentrated forces load a support node, the vector of global nodal forces, 

after taking into consideration boundary conditions, is identical 

p r =p. 

 Now we form element stiffness matrices of  the truss. As we showed in Chapter II, 

element stiffness matrices are build of the matrices J e with dimensions 2x2 (comp. (2.37)). On 

the basis of equation (2.37) we determine 

  9770.12 -1221.27     9770.12 -1221.27  

J1=      J2=     
  -1221.27 152.66     -1221.27 152.66  
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  14655.18 -1831.90     9216.56 6144.37  

J3=      J4=     
  -1831.90 228.99     6144.37 4096.25  

 

  0.00 0.00     1442.04 -1321.87  

J5=      J6=     
  0.00 4547.37     -1321.87 1211.71  

 

  2301.69 2013.98     0.00 0.00  

J7=      J8=     
  2013.98 1762.23     0.00 24000.00  

 

  9051.51 -1810.30  

J9=     
  -1810.30 -1810.30  

 

We form the stiffness matrix from the following blocks:  

  1 2 3 4 5 6   
  J1+J4 -J4 -J1      1 

  -J4 J4+J5+J6+J9 -J5 -J6 -J9   2 

K=  -J1 -J5 J1+J2+J5 -J2    3 

   -J6 -J2 J2+J3+J6+J7 -J7 -J3  4 

   -J9  -J7 J7+J8+J9 -J8  5 

     -J3 -J8 J3+J8  6 

 

and after substituting previously obtained matrices J e , we obtain all components of the matrix 

K which are tabulated on the next page. 
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The global stiffness matrix:   
  1 2 3 4 5 6   
  18986.7 4923.1 -9216.6 -6144.4 -9770.1 1221.3 0 0 0 0 0 0  

1 
  4923.1 4248.9 -6144.4 -4096.2 1221.3 -152.7 0 0 0 0 0 0   

  -9216.6 -6144.4 19710.1 3012.2 0 0 -1442.0 1321.9 -9051.5 1810.3 0 0  
2 

  -6144.4 -4096.2 3012.2 10217.4 0 -4547.4 1321.9 -1211.7 1810.3 -362.1 0 0   

  -9770.1 1221.3 0 0 19540.2 -2442.5 -9770.1 1221.3 0 0 0 0  
3 

K=  1221.3 -152.7 0 -4547.4 -2442.5 4852.7 1221.3 -152.7 0 0 0 0   

  0 0 -1442.0 1321.9 -9770.1 1221.3 28169.0 -2361.1 -2301.7 -2014.0 -14655.2 1831.9  
4 

  0 0 1321.9 -1211.7 1221.3 -152.7 -2361.1 3355.6 -2014.0 -1762.2 1831.9 -229.0   

  0 0 -9051.5 1810.3 0 0 -2301.7 -2014.0 11353.2 203.7 0 0  
5 

  0 0 1810.3 -362.1 0 0 -2014.0 -1762.2 203.7 26124.3 0 -24000.0   

  0 0 0 0 0 0 -14655.2 1831.9 0 0 14655.2 -1831.9  
6 

  0 0 0 0 0 0 1831.9 -229.0 0 -24000.0 -1831.9 24229.0   
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The global stiffness matrix after taking into consideration boundary conditions:  

  1 2 3 4 5 6   
  1 0 0 0 0 0 0 0 0 0 0 0  

1 
  0 1 0 0 0 0 0 0 0 0 0 0   

  0 0 19710.1 3012.2 0 0 -1442.0 1321.9 -9051.5 1810.3 0 0  
2 

  0 0 3012.2 10217.4 0 -4547.4 1321.9 -1211.7 1810.3 -362.1 0 0   

  0 0 0 0 19540.2 -2442.5 -9770.1 1221.3 0 0 0 0  
3 

K r =  0 0 0 -4547.4 -2442.5 4852.7 1221.3 -152.7 0 0 0 0   

  0 0 -1442.0 1321.9 -9770.1 1221.3 28169.0 -2361.1 -2301.7 -2014.0 -14655.2 0  
4 

  0 0 1321.9 -1211.7 1221.3 -152.7 -2361.1 3355.6 -2014.0 -1762.2 1831.9 0   

  0 0 -9051.5 1810.3 0 0 -2301.7 -2014.0 11353.2 203.7 0 0  
5 

  0 0 1810.3 -362.1 0 0 -2014.0 -1762.2 203.7 26124.3 0 0   

  0 0 0 0 0 0 -14655.2 1831.9 0 0 14655.2 0  
6 

  0 0 0 0 0 0 0 0 0 0 0 1   
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The boundary conditions are described by the equations: 

u1X = 0, u1Y = 0, u6Y = 0. 

Global numbers of the degrees of freedom of these displacements are equal to 

u1X  No 1; u1Y  No 2; u6Y  No 12, respectively. 

We lead in the modification in the equations with the above numbers consisting in the insertion 

of zeros into rows of the matrix K and leading in 1 on the main diagonal of this matrix. After 

the symmetrization of the matrix (the insertion of zeros into suitable columns) we obtain the 

matrix K r presented on the next page. The modified components are marked in italic fonts. As 

it was noticed in Chapter II the matrix K r is a positively determined matrix, thus, its 

determinant has to be bigger than zero. For our matrix we calculate 

det( ) .K r   217728 3382 10 030 . 

 Now we solve the set of equations 

K u pr r , 

with the use of the algorithm given in Appendix 2 we obtain the nodal displacement vector of 

the truss u and after inserting it into equation (2.75), we get the constraint reaction vector r: 

  0.0  
1 

   6.964  
1 

  0.0      2.554   

  -8.70282E-4  
2 

   ------  
2 

  6.01511E-4      ------   

  -1.94920E-4  
3 

   ------  
3 

u=  6.01511E-4    r=  ------   

  -5.62319E-4  
4 

   ------  
4 

  -1.76807E-4      ------   

  -1.24382E-3  
5 

   ------  
5 

  2.30635E-5      ------   

  -5.40219E-4  
6 

   ------  
6 

  0.0      -0.554   

 

 The nodal displacement vector u can be used to draw the scheme of the deformation of 

the structure which is shown in Fig.2.E1.2. 

 



 164 

Fig.2.E1.2 

 On the basis of equation (2.76) we calculate internal forces for the elements and from 

equation (2.77) we determine stresses. The values of the nodal displacements, internal forces 

and stresses for the elements are given in Tab.2.E1.3. 
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Tab.2.E1.3 

We obtain columns marked by uiX, uiY, ujX, ujY in the way shown in Fig.2.14 

No 

n 

uiX 

[m] 

uiY 

[m] 

ujX 

[m] 

ujY 

[m] 

uix 

[m] 

(2.22) 

ujx 

[m] 

(2.22) 

N 

[kN] 

(2.76) 

 

[kN/m2] 

(2.77) 

1 0.0 0.0 -1.94920E-4 6.01511E-4 0.0 -2.68023E-3 -2.660 -1063.8 

2 -1.94920E-4 6.01511E-4 -5.62319E-4 -1.76807E-4 -2.68023E-3 -5.36046E-3 -2.660 -1063.8 

3 -5.62319E-4 -1.76807E-4 -5.40219E-4 0.0 -5.36048E-3 -5.36049E-3 0.0 0.0 

4 0.0 0.0 -8.70282E-4 6.01511E-4 0.0 -3.90460E-3 -5.198 -1299.5 

5 -1.94920E-4 6.01511E-4 -8.70282E-4 6.01511E-4 6.01511E-3 6.01511E-3 0.0 0.0 

6 -8.70282E-4 6.01511E-4 -5.62319E-4 -1.76807E-4 -1.04799E-2 -2.95043E-3 1.998 2220.1 

7 -5.62319E-4 -1.76807E-4 -1.24382E-3 2.30635E-5 -5.39616E-3 -9.20881E-3 -1.549 -1721.6 

8 -5.40219E-4 0.0 -1.24382E-3 2.30635E-5 0.0 2.30635E-4 0.554 138.4 

9 -8.70282E-4 6.01511E-4 -1.24382E-3 2.30635E-5 -9.71348E-3 -1.22419E-2 -2.380 -595.0 
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