GENERAL FAILURE CRITERION
FOR IsoTrOPIC MEDIA®

By Jerzy Podgérski®

ABsTRACT: A general failure criterion dependent on three stress tensor invar-
iants is proposed. It is applicable to a rather large class of materials including,
metals, rocks, concrete and soils. The classical failure criteria and some recently
proposed criteria are particular cases of this general criterion. The condition
presented permits the uniform description of different groups of materials for
which quite different forms of the failure criteria have been applied to date. A
general form is applied to formulate failure criteria for plain concrete and sand.
These criteria, to which smooth (conical for sand or paraboloidal for concrete)
surfaces correspond, provide good agreement between predicted values of fail-
ure stresses and experimental results. This was possible due to the introduction
of a new two-parameter function describing the deviatoric cross section of the
failure surface. Two cross sectional shape characteristic ratios, A and 8, defined
in this paper, make possible the systematic analysis of different criteria and
allow prediction of the failure surface features, which can be helpful in inter-
pretation of the experimental results.

INTRODUCTION

Formulation of the exact failure criterion is still a problem for materials
whose behavior is essentially dependent on the third stress tensor in-
variant and the hydrostatic pressure.

The classical Coulomb-Mohr criterion, often used for such media, gives
results that differ considerably from test data, e.g., for rocks (2), sand
(3,5,8,16), clay (10,18), concrete and mortar (1,6,12,17,19).

Because of these differences, many more attempts at precise deter-
mination of the failure criteria have been undertaken. For example, dur-
ing the last decade, failure criteria had been formulated for sand by Gu-
dehus (4), Lade and Duncan (9), and Matsuoka (11), and for concrete
by Mills and Zimmerman (12), Willam and Warnke (20), Ottosen (14)
and, recently, by Lade (7).

In this paper, a general failure criterion for isotropic media is pro-
posed. This criterion is formulated in terms of three stress tensor in-
variants and includes both classical and recently proposed criteria as its
particular cases.

A general form of the criterion is applied to formulate failure criteria
for plain concrete and sand. These criteria, to which smooth conical (for
sand) or paraboloidal (for concrete) surfaces correspond, provide good
agreement between predicted values of failure stresses and experimental
results.

DescRiPTION OF THE FAILURE SURFACE

A simple description of the failure surface can be made by using the
Heigh-Westergaard cylindrical coordinate system (Fig. 1), related to the
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FIG. 1.—Two Coordinate Systems in Space of Principal Stresses

cartesian coordinate system of principal stresses by the following equa-
tions:

r=V2J, =13
3 — 3V3J, 1
cos 3¢ =] ———2(]2)3/2 ........................................... 1)
L
h=%=0'0’\/§

in which I; = oy is a first invariant of the stress tensor; o, = 1/3 I; is a
mean stress (tension is positive); J, = 1/2 s; s; is the second invariant of
deviatoric part of the stress tensor (s; = dev oy); 1, = V2/37], = octa-
hedral shear stress; and J; = 1/3 Sij Sk S = third invariant of stress de-
viator tensor.

TRACE OF A FAILURE SURFACE IN DEVIATORIC PLANE

Experimental results show that the shape of the deviatoric cross sec-
tion of the failure surface is very important for good agreement of pre-
dicted and experimental results. This fact led to the proposal of many
different functions on which the shape of the cross section might de-
pend. In this paper, these functions, in the form r = r(¢), will be called
shape functions.

Two simple forms of these functions have been proposed, one by Mills
and Zimmerman (12):

YT=71y— ] ...................................................... (2)
and one by Gudehus (4):
i e 3)



in which ] = cos 3¢ and r, = const. must satisfy the convexity condition,
75 = 10, for the Mills, Zimmerman function, and r, = 4 for the Gudehus
function.

Willam and Warnke (20) use the ellipse equation:

2(1 = N?) cos @ + (A — 1) V4(1 — \?) cos® @ + 5N — 4\
r =
4(1 — \?) cos ¢* + (2N — 1)?
in which \ is some constant, i.e.:

n= ©

=

and 0, 5 = A = 2 for every convex curve.
The Ottosen (14), Lade and Duncan (7,9) and Matsuoka (11) failure
criteria take the form of a shape function:

1 -1
r= [COS(E arc cos a])} ....................................... 6)

in which o = const., satisfying the condition 0 < a < 1.
The classical Coulomb-Mohr criterion gives

1 -1
r= [COS<§ arccos J — B>] ..................................... 7)

in which B = const. and depends on the angle of internal friction (see
Table 1).

Shape functions presented in Eqgs. 2—4, 6 and 7 lead to failure criteria
for which a perfect agreement with test results is not possible, because
only one shape characteristic ratio, e.g., A can be determined indepen-
dently and all other characteristics depend on it. For example, when the
shape characteristic A is assumed to be given, then the ratio § defined
by

(-

B = o ®)

=

is dependent on the chosen value of \.

Fig. 2 shows 8-\ characteristics for shape functions described by Egs.
2-4, 6 and 7, and some points obtained experimentally for concrete, sand
and clay. Comparison between these experimental points and the curves
given by the shape functions suggests that a two-parameter shape func-
tion would describe the experimental results much better.

Consider the following two-parameter function: -

Y

= F(l‘]*)/ P(J) = cos G arc cos af — B) .......................... )
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TABLE 1.—Some Particular Cases of Criterion Given by Eqg. 13

Shape
.Of Functions

failure

surface| Failure criteria Ay Ay A, Remarks
M @ () 4) (5) (6)

Cylin- [Huber-Mises -G 1 0 Circular cylinder,
dri- | J, =¥ Co = V2/3k
cal |[Tresca -Co P(]) 0 Hexagonal prism,

froas| = K Co=V33ka=18=m/6
Coni- |Drucker-Prager Cop = G| 1 0 Circular cone,
cal | Vh=a-b] Co=V2/3a, C = V6b
Lade-Duncan (9) Ci0q P(]) 0 C = V(g — 27)/(2x1),
B/L =« a=Via-2)/, =0
Matsuoka (11) (- P(]) 0 C, =V3/(6 +4/K?)
LL/I a = (1+1/K)/V1 + 2/GK?)
=8(K*+ 1) B=0
Coulomb-Mohr Cyop — Cof P() 0 Hexagonal pyramid,
o] = ¢ Co = (V2 ccos ¢)/V3 + sin? ¢,
Tontand Ci = (VZsin¢)/V/3 + sin’ ¢,
a=1,tan B = V3 (1~ sin ¢)/
(1 + sin ¢)

Parab- |Similar to Willam-| Cy — oy | C;P(J)| C[P(J)]* [Paraboloid with constant shape
oloi-| Warnke (20) of deviatoric cross section
dal failure criterion

for concrete

Ottosen (14) Co — gy | GP() C, Paraboloid with changeable
ALIfE+ PVTL/f. shape of deviatoric cross sec-
+BL/f,—1=0 tion, B = 0
in which P = K;
cos (1/3 arc cos
KoJ)

Note: I, = 0,0, + 0,03 + 0703 = second stress tensor invariant; I = ¢,0,03 = third stress
tensor invariant; k, a4, b, k1, K, ¢, A, B, K; and K, = constants; ¢ = angle of internal friction;
Cy, C, and C, = constants; and f, = uniaxial compressive strength.

in which a = const. and f = const., which satisfy the conditions 0 = «
=1,0 =8 = w/6. Eq. 9 describes a smooth convex curve, part of which
is shown in Fig. 3(a).

In some domain of the 8-\ plane (see Fig. 4), the complicated form of
Eq. 9 may be replaced by the simpler:

P =14 cVAFT oo (10)

1

r=—_—

P(I)
in which d = 1 and ¢ = constants which have to satisfy the convexity
condition ¢ = (2 Vd + 1)/(7 — 2d). Fig. 3(b) shows the shape of the curve
described by Eq. 10, which allows enlargement of the domain in which
the failure criterion may be used (see the dashed line in Fig. 4).

The 6-\ characteristics of the functions given by Egs. 9 and 10 are shown
in Fig. 4, in which the solid line limits the region described by the o and
B parameters of Eq. 9, and the dashed line limits the region described
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FIG. 3.—Shape of Curves Given by: (a) Eq. 9; (b) Eq. 10

by the c and d parameters of Eq. 10.

A comparison of Figs. 2 and 4 shows that the functions introduced
provide good agreement with tests results for concrete, sand and clay
because all experimental points from Fig. 2 are included in the region
described by the parameters of Eqs. 9 and 10 (Fig. 4).

The value of parameters « and B in Eq. 9 may be determined by the
following equations:
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using an iterative method in which the initial value of B can be taken
as equal to zero, or from the diagram plotted in Fig. 4.
Parameters ¢ and d, occurring in Eq. 10, can be evaluated from

e2—2
3 -2
1-2N0 (1-9)
e= +
20— 6N  (1—1\)
1—A

d=1+

C__
AVd+1- d—l)

~N
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in which values of characteristic ratios A and 8 must be calculated on the
basis of experimental data (see examples of application).

FormULATION OF GENERAL FAILURE CRITERION

The general failure criterion for isotropic materials may be expressed
in the following form:

AO + A1’TO + Ang O (13)

in which A, is a function of hydrostatic pressure only; and A; and A; =
functions dependent on ] = cos 3¢ or on the shape functions (Eq. 9 or
10).

This general form of the failure criterion permits the creation of many
different criteria. Table 1 shows some particular cases of the failure cri-
teria and specification of the Ay, A; and A, functions in these cases.

ExamPLES OF APPLICATION OF GENERAL CRITERION

Failure Criterion for Concrete.—In this case the best form of the fail-
ure criterion is

09 — Co + C1PTO + Cz’T% 0 (14)

in which P = cos (1/3 arc cos of — B) and C,, C; and C, = const. The
failure surface corresponding to Eq. 14 satisfies the following conditions
formulated by Newman and Newman (13) and by Ottosen (14): (1) Fail-
ure surface is convex, curved and smooth; (2) radius 7 of the deviatoric
cross section of the failure surface increases with increasing hydrostatic
pressure; and (3) characteristic ratio A changing from the value A = 0.5
near the vertex of the failure surface (1, — 0) to A = 1 for very high
hydrostatic pressure (g, —> —). :

The criterion in the form given by Eq. 14 contains five parameters, Cq,
Ci, C,, o and B, the values of which can be determined on the basis of
some simple test data (see Table 2).

The following relations may be adopted on the basis of the Paul (15)
tension cut-off hypothesis and the results of tests performed by Anden-
aes et al. (1), Kupfer (6) and Tasuji et al. (19) (for notation see Table 2):

fvt =f£/ fcc = 1'1fEI fac = 125fc
Characteristic ratios A and B and values of parameters a and B have
been calculated for these relations and presented in Table 3.

TABLE 2.—Tests Used for Parameter Determination in Fallure Criterion for Con-
crete

Type of test Gy 058 03 Strength-Max o, Remarks
(1) (2 ®) )
Uniaxial tension 1:0:0 fi J=1
Uniaxial compression 1:0:0 f J=-1
Biaxial compression 1:05:0 foe J=0
Biaxial compression 1:1:0 fo J=1
Triaxial tension 1:1:1 for Vertex
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TABLE 3.—Characteristic Ratios \ and 6, and Values of arc cos o and B Param-
eters versus f,/f.

arc cos a, B, in
fi/fe N (] in degrees degrees
(1) ) (3 4) (5)
0.06 0.51375 0.59182 2.034 0.235
0.07 0.51567 0.59386 2.339 0.261
0.08 0.51748 0.59581 2.635 0.283
0.09 0.51917 0.59764 2.922 0.300
0.10 0.52074 0.59936 3.197 0.313
0.11 0.52219 0.60097 . 3.462 0.321
0.12 0.52351 0.60246 3.717 0.325

Values of parameters Cy, C; and C, can be calculated using the equa-
tions:

G0 = fr e et et (15)
V3 5
C = R I O S TSRS (16)
P, 2fe
fe
fi
_% fe
G = BT 17)

in which Py = P(p¢ = 0) = cos (1/3 arc cos o — B).

Figs. 5 and 6 show the failure envelope in a biaxial state of stress and
the failure surface cross section in the 7¢-0y plane (J = +1). The proposed
criterion is compared with that of Ottosen (14) and Lade (7) on the basis
of test results obtained by Andenaes et al. (1), Kupfer (6), Mills and
Zimmerman (12), Schickert and Winkler (17) and Tasuji et al. (19). This
comparison shows that the concrete behavior is described more realist-
ically in the region ] = 0 (o7/0; = 0.5 in biaxial state of stress) by the
proposed criterion than by the previous criteria.

Failure Criterion for Sand.—Failure criteria for cohesionless media may
usually be described with sufficient precision by a linear version of Eq.
13:

Og — Co + C1P To = O i e e e it e e (18“)
or op— CO + Clpl To = 0 i e e et (18b)

In failure surface equations for dense sand and clay, the simple form
of the shape function given by Eq. 10 may be used, as it makes all cal-
culations easier.

The method of determining the four parameters C,, C;, o and B oc-
curing in Eq. 18 may be exemplified by using the test results of Green
and Bishop for sand (3).

Table 4 shows values of the internal friction angle determinated on
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the basis of Fig. 3 from the Green and Bishop paper (3). Using this data
and assuming zero cohesion, the ratios A and § may be determined from

3
sin ¢, sin ¢ ( 3 )
A= , 0= S S P (19)
3 .
3 2V3 \sin ¢.
sin ¢,
in which ¢., ¢o and ¢, = angles of internal friction for triaxial compres-
sion (] = —1), triaxial shear (J = 0) and triaxial tension (J = 1), respec-
tively.

For cohesionless media, Cy = 0 and the a and B parameters may be
obtained (having determined X\ and 6) from Eq. 11.

Thus, in Eq. 18, only one parameter C; must be known. The appro-
priate equation is
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P,
C1=2\/§—§—0—
+1

sin ¢g

in which Py = cos (1/3 arc cos o — B).
In Table 4, ¢, = 44°% ¢, = 39° and ¢, may be taken as = 43.5° so that
A = 0.7083; 8 = 0.7486; o = 0.9721; B = 10.28°% and C; = 0.5291.
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TABLE 4.—Internal Frictlon Angles, ¢, for Sand

¢ = arctan [V3 (1 — b)/
b =0, ~ g3/0, — 05° (1 + b)), in degrees ¢, in degrees

(1) (2) (3)
0 60 39
0.09 55.33 42.5
0.14 52.57 44
0.16 51.43 44
0.22 47.92 43.5
0.27 44.87 43.5
0.28 44.25 44
0.31 42.37 42
0.33 41.11 42
0.43 34.62 43

S 0.44 33.96 43
0.51 - 29.34 43.5
0.59 24.07 43
0.72 15.75 45, 43.5
0.86 7.43 45, 44
0.91 4.67 45
0.98 1 44
1 , , 0 4, 41

oy > 0y > 0.

Solid Line - Proposed Criterion; Dashed Line - Lade
and Duncan Criterion (9); Test Data of Green and Bishop (3)0

FIG. 7.—Deviatoric Cross Section of Failure Surface for Sand
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In Fig. 7, the solid line shows the deviatoric cross section of the failure
surface determined by these parameters. The points occurring in Fig. 7
represent the Green and Bishop test data, whereas the dashed line shows
the Lade and Duncan failure criterion (9) at k; = 56 (see Table 1).

Good agreement between the proposed criterion and the experimental
results can be observed, especially in the region where ] = 0 (¢ = 30°),
possible because of the two-parameter shape function, whereas in other
criteria (Lade and Duncan, Coulomb-Mohr), one-parameter shape func-
tions used do not attain such close agreement.

SUMMARY AND CONCLUSIONS

A general failure criterion dependent on three stress tensor invariants
is proposed. It is applicable to a rather large class of materials including,
e.g., metals, rocks, concrete and soils.

The classical Huber-Mises, Tresca, Coulomb-Mohr, Drucker-Prager
criteria, and those proposed more recently by Lade and Duncan (9) and
Ottosen (14), are some particular cases of the general criterion presented
here.

The condition presented permits the uniform description of different
groups of materials for which quite different forms of failure criteria have
been applied to date.

The five-parameter form of the criterion used to determine the fracture
condition for concrete, and the three-parameter form used as a failure
criterion for sand, provide perfect agreement between the theoretical
prediction of the limiting stress and the experimental results. This was
possible due to introduction of a new two-parameter function describing
the shape of the deviatoric cross section of the failure surface.

Two cross sectional shape characteristic ratios defined in this paper,
\ and 8, make possible the systematic analysis of different criteria and
allow prediction of the failure surface features, which can be helpful in
interpretation of the experimental results.
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Appenpix Il.—NOTATION

The following symbols are used in this paper:

Ao, A:,A; = some functions in a general form of the failure cri-
terion, Eq. 13;
Co,Cy,C, = parameters in Eq. 14 or Eq. 15;
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failure stresses for concrete (see Table 2);

oy , first invariant of the stress tensor;

010, + 0,03 + 0,03, second invariant of the stress
tensor;

010,03, third invariant of the stress tensor;

cos 3¢, invariant of the stress deviator;

(1/2)s;s;;, second invariant of the stress deviator;
(1/3)s8x5x , third invariant of the stress deviator;

parameters in some failure criteria (see Table 1);

functions on which the shape of the deviatoric cross
section of the failure surface is dependent, Eqs. 9
and 10;

cylindrical coordinates in the space of the principal
stresses, defined by Eq. 1;

dev oy, deviatoric part of the stress tensor;
parameters of the shape functions, Eqs. 9 and 10;
characteristics of the deviatoric cross section of the
failure surface, defined by Egs. 5 and §;

stress tensor;

(1/3)];, mean stress (tension is positive);

principal stresses;

V/(2/3)],, octahedral shear stress;

angle of internal friction; and

angles of internal friction at triaxial compression,
shear and tension, respectively.
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