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1. Limit state conditions 
The three failure criteria (Fig. 1) had been considered to analysis:  

 author’s (PJ) criterion, proposed in 1986 [1], which limit state depends on three tensor invariants 

(I1, J2, J3)  

 well known Drucker-Prager criterion, (I1, J2) 

 classical Huber-Mises criterion (J2 )  
  

Limit curves described by eqs. (1), (2), (3) in biaxial stress state are shown in Fig. 1. Fig. 2 shows 

“tension meridian” and “compression meridian” of the PJ and Drucker-Prager limit surface in 0 – 0 plane 

and Fig. 3 shows isometric view of this surfaces. 

 
 

1.1 PJ criterion 

The PJ criterion was proposed by one of the author’s (J.P.) in 1986 [1] in the form: 
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where:   
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1  - function describing the shape of limit surface in deviatoric plane, 
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0 J   - octahedral shear stress, 

1I     - first invariant of the stress tensor, 
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J    - alternative invariant of the stress deviator, 

210 ,,,, CCC   - material constants. 

 

Classical failure criteria, like Huber-Mises, Tresca, Drucker-Prager, Coulomb-Mohr as well as some 

new ones proposed by Lade, Matsuoka Ottosen, are particular cases [cf. 1,2] of the general form (1) PJ 

criterion. 

Material constants can be evaluated on the basis of some simple material test results like: 

 fc  - failure stress in uniaxial compression, 

  ft  - failure stress in uniaxial tension, 

 fcc  - failure stress in biaxial compression at 1/2 = 1, 

 f0c  - failure stress in biaxial compression at 1/2 = 2, 

 fv  - failure stress in triaxial tension at 1/2/3 = 1/1/1, 

 

For concrete or rock-like materials some simplifications can be taken on the basis of test results in 

biaxial stress state and R. M. Haythornthwaite “tension cutoff” hypotesis: 

 

fcc=1.1 fc ,    f0c=1.25 fc ,    fv= ft. 

 



1.2 Drucker – Prager criterion 

With notation used in eq. (1) well-known Drucker–Prager criterion can be written: 
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Two material constants C0 and C1 can be evaluated on the basis of uniaxial test results like 

ft  and  fc . 

 

1.3 Huber – Mises criterion 

Classical criterion proposed by T. Huber and  R. von Mises can be obtained by simplification of the 

general form (1): 
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Material constant  C0 , in this analysis,  is evaluated with uniaxial tension failure stress ft. 
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Fig. 1. Limit curves in biaxial state of stress 
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Fig. 2. PJ and Drucker-Prager limit surface cross section by 0 – 0 plane. 

 
 

Fig. 3. PJ and Drucker-Prager limit surface – isometric view. 
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